To solve this problem it is necessary to apply the concepts related to frequency as a function of speed and wavelength as well as the kinematic equations of simple harmonic motion
From the definition we know that the frequency can be expressed as

Where,


Therefore the frequency would be given as


The frequency is directly proportional to the angular velocity therefore



Now the maximum speed from the simple harmonic movement is given by

Where
A = Amplitude
Then replacing,


Therefore the maximum speed of a point on the string is 3.59m/s
If it produces 20J of light energy in a second, then that 20J is the 10% of the supply that becomes useful output.
20 J/s = 10% of Supply
20 J/s = (0.1) x (Supply)
Divide each side by 0.1:
Supply = (20 J/s) / (0.1)
<em>Supply = 200 J/s </em>(200 watts)
========================
Here's something to think about: What could you do to make the lamp more efficient ? Answer: Use it for a heater !
If you use it for a heater, then the HEAT is the 'useful' part, and the light is the part that you really don't care about. Suddenly ... bada-boom ... the lamp is 90% efficient !
Answer:
The more high yield crops are planted, the more production there will be from plants.
Explanation:
High-yield plants are plants that are genetically modified or modified artificially in a way that makes farming plants more efficient. More crops grow, therefore more money.
The answer is, the more high-yield plants there are, the more efficiency there will be from farming.
Answer:
2.5m/s²
Explanation:
a = v/t
Where;
V = velocity (m/s)
a = acceleration (m/s²)
t = time (s).
According to the information provided in this question,
a = ?
v = 10m/s
t = 4
a = 10/4
a = 2.5m/s²