For the answer to the question above asking what is the primary determinant of the voltage developed by a battery?the answer is that the <span>the nature of the materials in the reaction that is the primary determinant of the voltage from a battery.</span>
We know, by conservation of energy :

Therefore,

Putting given values, we get :

Therefore, the spring be compressed to 6.93 cm to send the ball twice as high.
Hence, this is the required solution.
I’m pretty sure the answer is C. Any change of state or movement requires energy
The parallel component is given by
F=180cos(25)=163.14N
Answer:
a_total = 2 √ (α² + w⁴)
, a_total = 2,236 m
Explanation:
The total acceleration of a body, if we use the Pythagorean theorem is
a_total² = a_T²2 +
²
where
the centripetal acceleration is
a_{c} = v² / r = w r²
tangential acceleration
a_T = dv / dt
angular and linear acceleration are related
a_T = α r
we substitute in the first equation
a_total = √ [(α r)² + (w r² )²]
a_total = 2 √ (α² + w⁴)
Let's find the angular velocity for t = 2 s if we start from rest wo = 0
w = w₀ + α t
w = 0 + 1.0 2
w = 2.0rad / s
we substitute
a_total = r √(1² + 2²) = r √5
a_total = r 2,236
In order to finish the calculation we need the radius to point A, suppose that this point is at a distance of r = 1 m
a_total = 2,236 m