They need more oxygen to function, so gas exchange needs to increase
Answer:
Explanation:
We shall take the help of vector form of displacement . Taking east as i and north as j
4.0m N = 4 j
7.5 m E = 7.5 i
6.8 m S = - 6.8 j
3.7 m E, = 3.7 i
3.6 m S = - 3.6 j
5.3 m W = - 5.3 i
3.7 m N, = 3.7 j
5.6 m W = - 5.6 i
4.4 m S = - 4.4 j
4.9 m W = - 4.9 i
Total displacement = 4j +7.5 i -6.8j+3.7i-3.6j-5.3i+3.7j-5.6i-4.4j-4.9i
= -4.6 i -7.1 j
magnitude of displacement = 
= 8.46 m
Direction
Tanθ = 7.1/ 4.6
θ = 57⁰ south of west .
distance walked = 4+7.5 +6.8+3.7+3.6+5.3+3.7+5.6+4.4+4.9
= 49.5 m
Answer:
B. 24.2 m/s
Explanation:
Given;
mass of the roller coaster, m = 450 kg
height of the roller coaster, h = 30 m
The maximum potential energy of the roller coaster due to its height is given by;



Therefore, the maximum speed of the roller coaster is 24.2 m/s.
Answer:
202.8m
Explanation:
Given that A pirate fires his cannon parallel to the water but 3.5 m above the water. The cannonball leaves the cannon with a velocity of 120 m/s. He misses his target and the cannonball splashes into the briny deep.
First calculate the total time travelled by using the second equation of motion
h = Ut + 1/2gt^2
Let assume that u = 0
And h = 3.5
Substitute all the parameters into the formula
3.5 = 1/2 × 9.8 × t^2
3.5 = 4.9t^2
t^2 = 3.5/4.9
t^2 = 0.7
t = 0.845s
To know how far the cannonball travel, let's use the equation
S = UT + 1/2at^2
But acceleration a = 0
T = 2t
T = 1.69s
S = 120 × 1.69
S = 202.834 m
Therefore, the distance travelled by the cannon ball is approximately 202.8m.
Answer:
The frequency of the oscillation is 0.9Hz
Explanation:
This problem bothers on simple harmonic motion of a spring
Given data
Mass of the child m= 25kg
Spring constant k=791 N/m
Amplitude a= 31cm
But the period of the motion as a result of the adults sholve is expressed as
T=2π√m/k
T=2*3.142√25/791
T=6.284√0.031
T=6.284*0.176
T=1.11 sec
But frequency F=1/T
F=1/1.11
F=0.9Hz