Answer:
The work done by the campers is 
(b) is correct option.
Explanation:
Given that,
Weight = 5000 N
Frictional force = 300 n
Distance = 1000 m
Constant rate of speed = 0.20 m/s²
We need to calculate the force
Using newton's law of motion




We need to calculate the work done
Using formula of work done

Put the value into the formula


Hence, The work done by the campers is 
Answer:
Option A. 40 mi/h
Explanation:
To obtain the average speed of the vehicle, we'll begin by calculating the distance travelled by the vehicle in each case. This is illustrated below:
Case 1:
Speed = 30 mi/h
Time = 2 h
Distance =...?
Speed = Distance /Time
30 = Distance /2
Cross multiply
Distance = 30 × 2
Distance = 60 mi
Case 2:
Speed = 60 mi/h
Time = 1 h
Distance =...?
Speed = Distance /Time
60 = Distance /1
Cross multiply
Distance = 60 × 1
Distance = 60 mi
Finally, we shall determine the average speed of the vehicle as follow:
Total distance travelled = 60 + 60
Total distance travelled = 120 mi
Total time = 2 + 1
Total time = 3 h
Average speed =..?
Average speed = Total Distance travelled /Total time
Average speed = 120/3
Average speed = 40 mi/h
Therefore, the average speed of the vehicle is 40 mi/h
Answer:
Explanation:
Given that,
Radius of solenoid R = 4cm = 0.04m
Turn per length is N/l = 800 turns/m
The rate at which current is increasing di/dt = 3 A/s
Induced electric field?
At r = 2.2cm=0.022m
µo = 4π × 10^-7 Wb/A•m
The magnetic field inside a solenoid is give as
B = µo•N•I
The value of electric field (E) can
only be a function of the distance r from the solenoid’s axis and it give as,
From gauss law
∮E•dA =qenc/εo
We can find the tangential component of the electric field from Faraday’s law
∮E•dl = −dΦB/dt
We choose the path to be a circle of radius r centered on the cylinder axis. Because all the requested radii are inside the solenoid, the flux-area is the entire πr² area within the loop.
E∮dl = −d/dt •(πr²B)
2πrE = −πr²dB/dt
2πrE = −πr² d/dt(µo•N•I)
2πrE = −πr² × µo•N•dI/dt
Divide both sides by 2πr
E =- ½ r•µo•N•dI/dt
Now, substituting the given data
E = -½ × 0.022 × 4π ×10^-7 × 800 × 3
E = —3.32 × 10^-5 V/m
E = —33.2 µV/m
The magnitude of the electric field at a point 2.2 cm from the solenoid axis is 33.2 µV/m
where the negative sign denotes counter-clockwise electric field when looking along the direction of the solenoid’s magnetic field.
Answer:
dV = 32.98 cm³
Explanation:
We know that
V = f ( h,r)

We also know that


Given that
h= 10 cm
d=10 cm , r= 5 cm
Thickness = 0.05 cm so dr = 0.05 cm
The metal in the top and the bottom is 0.2 cm thick so dh = 0.2 + 0.2 cm
dh = 0.4 cm
Now by putting the values


dV = 32.98 cm³