Answer:
The average acceleration during the 6.0 s interval was -27 m/s².
Explanation:
Hi there!
The average acceleration is defined as the change in velocity over time:
a = Δv/t
Where:
a = acceleration.
Δv = change in velocity = final velocity - initial velocity
t = elapsed time
The change in velocity will be:
Δv = final velocity - initial velocity
Δv = -74 m/s - 87 m/s = -161 m/s
(notice the negative sign of the velocity that is in opposite direction to the direction considered positive)
Then the average acceleration will be:
a = Δv/t
a = -161 m/s / 6.0 s
a = -27 m/s²
The average acceleration during the 6.0 s interval was -27 m/s².
Answer:
The speed and direction of the two players immediately after the tackle are 3.3 m/s and 53.4° South of West
Explanation:
given information:
mass of fullback,
= 92 kg
speed of full back,
= 5.8 to south
mass of lineman,
=110 kg
speed of lineman,
= 3.6
according to conservation energy,
assume that the collision is perfectly inelastic, thus
initial momentum = final momentum
=
'
m₁v₁ = (m₁+m₂)
'
' = m₁v₁/(m₁+m₂)
= (92) (5.8)/(92+110)
= 2.64 m/s
=
'
m₂v₂ = (m₁+m₂)
'
' = m₁v₁/(m₁+m₂)
= (110) (3.6)/(92+110)
= 1.96 m/s
thus,
' = √
'²+
'²
= 3.3 m/s
then, the direction of the two players is
θ = 90 - tan⁻¹(
'/
')
= 90 - tan⁻¹(1.96/2.64)
= 53.4° South of West
Answer: D. There is a lot of light pollution on earth
Explanation: The light pollution on Earth has nothing to do with the stars in the sky
Answer:
h = 51020.40 meters
Explanation:
Speed of the rifle, v = 1000 m/s
Let h is the height gained by the bullet. It can be calculated using the conservation of energy as :


h = 51020.40 meters
So, the bullet will get up to a height of 51020.40 meters. Hence, this is the required solution.
Answer:
a) 
b) 
c) 
Explanation:
From the question we are told that:
Given Frequencies
a. 100 Hz,
b. 1 kHz,
c. 100 kHz.
Generally the equation for Waveform Period is mathematically given by

Therefore
a)
For



b)
For



c)
For


