Answer:
speed of the bullet before it hit the block is 200 m/s
Explanation:
given data
mass of block m1 = 1.2 kg
mass of bullet m2 = 50 gram = 0.05 kg
combine speed V= 8.0 m/s
to find out
speed of the bullet before it hit the block
solution
we will apply here conservation of momentum that is
m1 × v1 + m2 × v2 = M × V .............1
here m1 is mass of block and m2 is mass of bullet and v1 is initial speed of block i.e 0 and v2 is initial speed of bullet and M is combine mass of block and bullet and V is combine speed of block and bullet
put all value in equation 1
m1 × v1 + m2 × v2 = M × V
1.2 × 0 + 0.05 × v2 = ( 1.2 + 0.05 ) × 8
solve it we get
v2 = 200 m/s
so speed of the bullet before it hit the block is 200 m/s
Answer:
Force is classified as a push or a pull
Explanation:
Answer: option A. strong nuclear force.
Explanation:
The diagram shows the subatomic particles inside the nucelous: protons and neutrons.
As you know, the protons are positively charged partilces inside the nucleous.
Being those particles charged with the same kind of charge they experiment electrostatic repulsion. So, how do you explain that they can stand together in such small space as it is the nucleous?
The responsible of keeping the subatomic particles together is the so called strong nuclear force.
Strong nuclear force or simply strong force is one of the four fundamental interactions or forces: i) gravitational, ii) electromagnetic, iii) weak nuclear force, and iv) strong nuclear force.
Strong nuclear force is the strongest force of nature and acts only in short distances as those inside the nucleous and is responsible for both the atraction among quarks and the atraction among protons to bind them together inside the atomic nucleous.
Answer:
Newton's second law of motion
Explanation:
Newton's second law of motion can be stated
The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object.
in another form,
Force = mass * acceleration
With the blocking of activation of clotting factors, the rate of conversion of fibrinogen to fibrin will decrease to a huge extent and this will prevent the clot formation.
Option A
<h3><u>Explanation:</u></h3>
The process of stopping of flow of blood through any wound by formation of a clot is known as blood clotting. The clot in blood is formed by conversion of the fibrinogen protein into its polymer form fibrin which forms a meshwork.
The conversion of fibrinogen to fibrin requires a lot of enzymes and factors present which is required one by one, known as the Cascade theory. Total of 13 factors are required, where there are prothrombin, thromboplastin, and different other factors. Inactivation of any of the 13 factors will lead to less conversion of fibrinogen to fibrin, thereby the rate of conversion will highly decrease.