A hypothesis is an educated prediction that can be tested.
Answer:
Your answer would be C, Radio waves.
Explanation:
Answer:
Subducting convergent boundary
Explanation:
Generally, volcanoes occurs in both divergent and convergent boundaries. But the convergent boundary it occurs is usually associated with subduction.
Divergent boundary, plates move away from each other creating a new crust in the process. The diverging plates creates the space for magma to be squeezed through cracks and fissures. The magma's erupt to form volcanoes. In the Atlantic ocean the spreading of the plates causes an upwelling of magma through the crest of the Atlantic ridges. New oceanic crust are formed through this process. Sometimes the magma eruption forms volcanoes that are higher than the sea level.
Convergent boundary , plates collides with each other . But in the case of volcanoes existence , the collision should be between a denser plate(oceanic plates) and a less dense plates(continental plates) so that subduction can take place. The subducted plates (oceanic plates) creates trenches and get expose to high temperature and pressure as it sinks toward the mantle. The upper mantle rocks melts and migrate to the earth surface forming volcanoes . Over 75% of the volcanoes occur along the pacific basin where convergent boundary is dominant. Pacific ring of fire has one of the most number of volcanoes.
To solve this exercise it is necessary to take into account the concepts related to Tensile Strength and Shear Strenght.
In Materials Mechanics, generally the bodies under certain loads are subject to both Tensile and shear strenghts.
By definition we know that the tensile strength is defined as

Where,
Tensile strength
F = Tensile Force
A = Cross-sectional Area
In the other hand we have that the shear strength is defined as

where,
Shear strength
Shear Force
Parallel Area
PART A) Replacing with our values in the equation of tensile strenght, then

Resolving for F,

PART B) We need here to apply the shear strength equation, then



In such a way that the material is more resistant to tensile strength than shear force.