Robert A. Millikan and Harvey Fletcher performed the oil drop experiment.
When the charged balloon is brought near the wall, it repels some of the negatively charged electrons in that part of the wall. Therefore, that part of the wall is left repelled.
<u>Explanation</u>:
- Balloons don't stick to walls. However, if you rub the balloon on an appropriate piece of material such as clothing or a wall, electrons are pulled from the other material to the balloon.
- The balloon now as more electrons than normal and therefore has an overall negative charge. Two balloons like this will repel each other.
- The other material now has an overall positive charge. Because opposite charges attract, the balloon will now appear to stick to the other material. If you didn't rub the balloon first, it's charge would be neutral and it wouldn't stick to the wall.
Answer:
It helps the body remove heat through sweating.
Explanation:
When the weather is hot, the body tries to keep cool by sweating. The high specific heat capacity means that the body doesn't have to lose much water to stay cool.
The high specific heat capacity of water doesn’t heat the body, but it slows down the rate of heat loss when the weather is cool.
B is wrong. The body uses glucose, not water, as an energy source.
C is wrong. The high specific heat capacity of water is not connected with the body's ability to store it.
D is wrong. The high specific heat capacity of water doesn't heat the body, but it slows the rate at which it cools.
Answer:
An acid is a substance that donates protons (in the Brønsted-Lowry definition) or accepts a pair of valence electrons to form a bond (in the Lewis definition). A base is a substance that can accept protons or donate a pair of valence electrons to form a bond. Bases can be thought of as the chemical opposite of acids.