Answer:
21.10g of H2O
Explanation:
We'll begin by writing the balanced equation for the reaction. This is given below:
2C7H14 + 21O2 —> 14CO2 + 14H2O
From the balanced equation above, 2L of C7H14 produced 14L of H2O.
Therefore, 3.75L of C7H14 will produce = (3.75 x 14)/2 = 26.25L of H2O.
Next, we shall determine the number of mole of H2O that will occupy 26.25L at stp. This is illustrated below:
1 mole of a gas occupy 22.4L at stp
Therefore, Xmol of H2O will occupy
26.25L i.e
Xmol of H2O = 26.25/22.4
Xmol of H2O = 1.172 mole
Therefore, 1.172 mole of H2O is produced from the reaction.
Next, we shall convert 1.172 mole of H2O to grams. This is illustrated below:
Number of mole H2O = 1.172 mole
Molar mass of H2O = (2x1) + 16 = 18g/mol
Mass of H2O =..?
Mass = mole x molar mass
Mass of H2O = 1.172 x 18
Mass of H2O = 21.10g
Therefore, 21.10g of H2O is produced from the reaction.
Answer:
67.5%
Explanation:
Step 1: Write the balanced equation for the electrolysis of water
2 H₂O ⇒ 2 H₂ + O₂
Step 2: Calculate the theoretical yield of O₂ from 17.0 g of H₂O
According to the balanced equation, the mass ratio of H₂O to O₂ is 36.04:32.00.
17.0 g H₂O × 32.00 g O₂/36.04 g H₂O = 15.1 g O₂
Step 3: Calculate the percent yield of O₂
Given the experimental yield of O₂ is 10.2 g, we can calculate its percent yield using the following expression.
%yield = (exp yield / theoret yield) × 100%
%yield = (10.2 g / 15.1 g) × 100% = 67.5%
Answer:
energy due to its velocity. We can compare potential and kinetic energy by considering a car on a hill. When the car is at the top of the hill it has the most potential energy.
8 protons in oxygen bc it has an atomic number of 8