<span>1) </span><span>What is air pressure? (Answ</span>er: Atmospheric
pressure, sometimes also called barometric pressure, is the pressure within the
atmosphere of Earth.)
<span>2)
</span><span>What
is a barometer and what is it used to measure? <span>(Answer: A barometer is a scientific instrument used in meteorology to
measure atmospheric pressure. Pressure tendency can forecast short term changes in the
weather.)</span></span>
<span>3)
</span><span>How
does air pressure change? <span>(Answer: Millibar values used in
meteorology range from about 100 to 1050. At sea level, standard air pressure in millibars is
1013.2. Weather maps showing the pressure at
the surface are drawn using millibars. ... This change in pressure is
caused by changes in air density, and air density is related to
temperature.)</span></span>
<span>4) </span><span>Why is cooler, drier air related to High
Pressure? <span>(Answer: This is due to density differences
between the two air masses.
Since stronger high-pressure systems contain cooler or drier air, the air mass is denser and flows
towards areas that are warm or moist, which are in the vicinity of low pressure areas in advance of
their associated cold fronts.)</span></span>
<span>5)
</span><span>Why
is warm, moister air related to Low Pressure?
<span>(Answer: When air warms, its molecules scatter.
The air becomes
lighter and rises.)</span></span>
Answer:
Concentration of chloride ions = 0.584M
Explanation:
The step by step calculations is shown as attached below.
Answer:
The net ionic equation is as follows:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
Explanation:
The reaction between Hydrocyanic acid, HCN, and sodium hydroxide is a neutralization reaction between a weak acid and a strong base.
Hydrocyanic acid being a weak acid ionizes only slightly, while sodium hydroxide being a strong base ionizes completely. The equation for the reaction is given below:
A. HCN(aq) + NaOH-(aq) ----> NaCN(aq) + H2O(l)
Since Hydrocyanic acid is written in the aqueous form as it ionizes only slightly and the ionic equation is given below:
HCN(aq) + Na+(aq)+OH-(aq) ----> Na+(aq)+CN-(aq) + H2O(l)
Na+ being a spectator ion is removed from the net ionic equation given below:
HCN(aq) + OH-(aq) ----> H20(l) + CN-(aq)
This separation technique is a 4-step procedure. First, add H₂SO₄ to the solution. Because of common ion effect, BaSO₄ will not react, only Mg(OH)₂.
Mg(OH)₂ + H₂SO₄ → MgSO₄ + 2 H₂O
The aqueous solution will now contain MgSO₄ and BaSO₄. Unlike BaSO₄, MgSO₄ is soluble in water. So, you filter out the solution. You can set aside the BaSO₄ on the filter paper. To retrieve Mg(OH)₂, add NaOH.
MgSO₄ + 2 NaOH = Mg(OH)₂ + Na₂SO₄
Na₂SO₄ is soluble in water, while Mg(OH)₂ is not. Filter this solution again. The Mg(OH)₂ is retrieved in solid form on the filter paper.