Answer:
The answer is d = C/pi.
Step-by-step explanation:
To solve this equation for the variable d, we must isolate it on the right side of the equation. It is currently being multiplied by pi, so to reverse this action, we should divide both sides of the equation by pi.
c = (pi) * d
c/pi = pi/pi * d
c/pi = d
d = c/pi
Therefore, the answer is d = C/pi.
Hope this helps!
Answer:
B. HL
Step-by-step explanation:
Answer: If Ken used 12 feet of wrapping paper, 3/4 then he would have had 16 ft of wrapping paper before he started wrapping
Step-by-step explanation:
12 divided by 3 is 4 giving us the equation 4/4 equals 4 x 4
the solid is made up of 2 regular octagons, 8 sides, joined up by 8 rectangles, one on each side towards the other octagonal face.
from the figure, we can see that the apothem is 5 for the octagons, and since each side is 3 cm long, the perimeter of one octagon is 3*8 = 24.
the standing up sides are simply rectangles of 8x3.
if we can just get the area of all those ten figures, and sum them up, that'd be the area of the solid.
![\bf \textit{area of a regular polygon}\\\\ A=\cfrac{1}{2}ap~~ \begin{cases} a=apothem\\ p=perimeter\\[-0.5em] \hrulefill\\ a=5\\ p=24 \end{cases}\implies A=\cfrac{1}{2}(5)(24)\implies \stackrel{\textit{just for one octagon}}{A=60} \\\\[-0.35em] \rule{34em}{0.25pt}\\\\ \stackrel{\textit{two octagon's area}}{2(60)}~~+~~\stackrel{\textit{eight rectangle's area}}{8(3\cdot 8)}\implies 120+192\implies 312](https://tex.z-dn.net/?f=%5Cbf%20%5Ctextit%7Barea%20of%20a%20regular%20polygon%7D%5C%5C%5C%5C%20A%3D%5Ccfrac%7B1%7D%7B2%7Dap~~%20%5Cbegin%7Bcases%7D%20a%3Dapothem%5C%5C%20p%3Dperimeter%5C%5C%5B-0.5em%5D%20%5Chrulefill%5C%5C%20a%3D5%5C%5C%20p%3D24%20%5Cend%7Bcases%7D%5Cimplies%20A%3D%5Ccfrac%7B1%7D%7B2%7D%285%29%2824%29%5Cimplies%20%5Cstackrel%7B%5Ctextit%7Bjust%20for%20one%20octagon%7D%7D%7BA%3D60%7D%20%5C%5C%5C%5C%5B-0.35em%5D%20%5Crule%7B34em%7D%7B0.25pt%7D%5C%5C%5C%5C%20%5Cstackrel%7B%5Ctextit%7Btwo%20octagon%27s%20area%7D%7D%7B2%2860%29%7D~~%2B~~%5Cstackrel%7B%5Ctextit%7Beight%20rectangle%27s%20area%7D%7D%7B8%283%5Ccdot%208%29%7D%5Cimplies%20120%2B192%5Cimplies%20312)