Answer:
yes!you are right a cloudy formation will be formed when they will react.its because if nitrogen.
In the preparatory phase of glycolysis, two molecules of ATP are invested and the hexose chain is cleaved into two triose phosphates. During this, the phosphorylation of glucose and its conversion to glyceraldehyde-3-phosphate take place. During this phase, the conversion of glyceraldehyde-3-phosphate to pyruvate and the coupled formation of ATP take place. Because Glucose is split to yield two molecules of D-Glyceraldehyde-3-phosphate, each step in the payoff phase occurs twice per molecule of glucose.
Glyceraldehyde 3-phosphate dehydrogenase Simultaneous oxidation and phosphorylation of G3P produce 1,3-bisphosphoglycerate (1,3-BPG) and nicotine adenine dinucleotide (NADH).
The divalent cation also affected the response of the enzyme from the endosperm and shoots to adenine nucleotides and inorganic pyrophosphate.
This phase is also called the glucose activation phase. In the preparatory phase of glycolysis, two molecules of ATP are invested and the hexose chain is cleaved into two triose phosphates. During this, the phosphorylation of glucose and its conversion to glyceraldehyde-3-phosphate take place. Steps 1, 2, 3, 4, and 5 together are called the preparatory phase.
For more information on phosphorylation click on the link below:
brainly.com/question/7465103
#SPJ4
Answer:
the answer is Fragrent compounds
The complete balanced chemical reaction is:
2 AgNO3 + Na2S --> 2 NaNO3 + Ag2S
First let us calculate the number of moles of AgNO3.
moles AgNO3 = 0.315 M * 0.035 L
moles AgNO3 = 0.011025 mol
From the reaction, 1 mole of Na2S is needed for every 2
moles of AgNO3 hence:
moles Na2S required = 0.011025 mol AgNO3 * (1 mol Na2S / 2
mol AgNO3)
moles Na2S required = 5.5125 x 10^-3 mol
Therefore volume required is:
volume Na2S = 5.5125 x 10^-3 mol / 0.260 M
<span>volume Na2S = 0.0212 L = 21.2 mL</span>
Turning things to gram so need to convert to the metric system