Answer:
equal the number of electrons.
Explanation:
Fluorine has 9 protons and 9 electrons
Iodine has 53 protons and 53 electrons
Answer:
1) acetylide
2) enol
3) aldehydes
4) tautomers
5) alkynes
6) Hydroboration
7) Keto
8) methyl ketones
Explanation:
Acetylide anions (R-C≡C^-) is a strong nucleophile. Being a strong nucleophile, we can use it to open up an epoxide ring by SN2 mechanism. The attack of the acetylide ion occurs from the backside of the epoxide ring. It must attack at the less substituted side of the epoxide.
Oxomercuration of alkynes and hydroboration of alkynes are similar reactions in that they both yield carbonyl compounds that often exhibit keto-enol tautomerism.
The equilibrium position may lie towards the Keto form of the compound. Usually, if terminal alkynes are used, the product of the reaction is a methyl ketone.
<span>The answer is D)<em> </em>are compounds that have the same number and types of atoms but are arranged differently.
Source: <em>just took the test :)</em></span>
Answer : Carbon tetrachloride,
will show the greatest freezing point lowering.
Explanation :
For non-electrolyte solution, the formula used for lowering in freezing point is,

where,
= lowering in freezing point
= molal depression constant
m = molality
As per question, the molality is same for all the non-electrolyte solution. So, the lowering in freezing point is depend on the
only.
That means the higher the value of
, the higher will be the freezing point lowering.
From the given non-electrolyte solutions, the value of
of carbon tetrachloride is higher than the other solutions.
Therefore, Carbon tetrachloride,
will show the greatest freezing point lowering.