Answer:
Explanation:
An industrial system consists of inputs, processes and outputs. The inputs are the raw materials, labor and costs of land,transport, power and other infrastructure. The processes include a wide range of activities that convert the raw material into finished products.
Answer:
Explanation:
Given the height reached by a balloon after t sec modeled by the equation
h=1/2t²+1/2t
a) To calculate the height of the balloon after 40 secs we will substitute t = 40 into the modeled equation and calculate the value of t
If h(t)=1/2t²+1/2t
h(40) = 1/2(40)²+1/2 (40)
h(40) = 1600/2 + 40/2
h(40) = 800 + 20
h(40) = 820 feet
The height of the balloon after 40 secs is 820 feet
b) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
when v = 0sec
v(0) = 0 + 1/2
v(0) = 1/2 ft/sec
at v = 30secs
v(30) = 30 + 1/2
v(30) = 30 1/2 ft/sec
average velocity = v(30) - v(0)
average velocity = 30 1/2 - 1/2
average velocity of the balloon between t = 0 and t = 30 = 30 ft/sec
c) Velocity is the change of displacement of a body with respect to time.
v = dh/dt
v(t) = 2(1/2)t²⁻¹ + 1/2
v(t) = t + 1/2
The velocity of the balloon after 30secs will be;
v(30) = 30+1/2
v(30) = 30.5ft/sec
The velocity of the balloon after 30 secs is 30.5 feet/sec
(a) No, because the mechanical energy is not conserved
Explanation:
The work-energy theorem states that the work done by the engine on the airplane is equal to the gain in kinetic energy of the plane:
(1)
However, this theorem is only valid if there are no non-conservative forces acting on the plane. However, in this case there is air resistance acting on the plane: this means that the work-energy theorem is no longer valid, because the mechanical energy is not conserved.
Therefore, eq. (1) can be rewritten as

which means that the work done by the engine (W) is used partially to increase the kinetic energy of the airplane (
) and part is lost because of the air resistance (
).
(b) 77.8 m/s
First of all, we need to calculate the net force acting on the plane, which is equal to the difference between the thrust force and the air resistance:

Now we can calculate the acceleration of the plane, by using Newton's second law:

where m is the mass of the plane.
Finally, we can calculate the final speed of the plane by using the equation:

where
is the final velocity
is the initial velocity
is the acceleration
is the distance travelled
Solving for v, we find
