Answer:
10.52 m
Explanation:
The power radiated by a body is given by
P = σεAT⁴ where ε = emissivity = 0.97, T = temperature = 30 C + 273 = 303 K, A = surface area of human body = 1.8 m², σ = 5.67 × 10⁻⁴ W/m²K⁴
P = σεAT⁴ = 5.67 × 10⁻⁸ W/m²K⁴ × 0.97 × 1.8 m² × (303)⁴ = 834.45 W
This is the power radiated by the human body.
The intensity I = P/A where A = 4πr² where r = distance from human body.
I = P/4πr²
r = (√P/πI)/2
If the python is able to detect an intensity of 0.60 W/m², with a power of 834.45 W emitted by the human body, the maximum distance r, is thus
r = (√P/πI)/2 = (√834.45/0.60π)/2 = 21.04/2 = 10.52 m
So, the maximum distance at which a python could detect your presence is 10.52 m.
Answer:
- I have fond the answer
Explanation:
but my camera doesn't work
Answer:
hi, this is the answer
Explanation:
A horizontal line on a distance-time graph shows no change in distance, therefore there is no motion.
The object is stationary. ...
Constant speed is motion that occurs with the same ratio of distance to time throughout the entire length of the motion.
pls mark this as the brainliest...
Answer:
E_particle = 1,129 10⁻²⁰ J / particle
T= 817.5 K
Explanation:
Energy is a scalar quantity so it is additive, let's look for the total energy of each gas
Gas a
E_a = 2 5000 = 10000 J
Gas b
E_b = 3 8000 = 24000 J
When the total system energy is mixed it is
E_total = E_a + E_b
E_total = 10000 + 24000 = 34000
The total mass is
M = m_a + m_b
M = 2 +3 = 5
The average energy among the entire mass is
E_averge = E_total / M
E_averago = 34000/5
E_average = 6800 J
One mole of matter has Avogadro's number of atoms 6,022 10²³ particles
Therefore, each particle has an energy of
E_particle = E_averag / 6.022 10²³ = 6800 /6.022 10²³
E_particle = 1,129 10⁻²⁰ J / particle
For find the temperature let's use equation
E = kT
T = E / k
T = 1,129 10⁻²⁰ / 1,381 10⁻²³
T = 8.175 102 K
T= 817.5 K
Answer:
a) L=0. b) L = 262 k ^ Kg m²/s and c) L = 1020.7 k^ kg m²/s
Explanation:
It is angular momentum given by
L = r x p
Bold are vectors; where L is the angular momentum, r the position of the particle and p its linear momentum
One of the easiest ways to make this vector product is with the use of determinants
![{array}\right] \left[\begin{array}{ccc}i&j&k\\x&y&z\\px&py&pz\end{array}\right]](https://tex.z-dn.net/?f=%7Barray%7D%5Cright%5D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5Cx%26y%26z%5C%5Cpx%26py%26pz%5Cend%7Barray%7D%5Cright%5D)
Let's apply this relationship to our case
Let's start by breaking down the speed
v₀ₓ = v₀ cosn 45
voy =v₀ sin 45
v₀ₓ = 9 cos 45
voy = 9 without 45
v₀ₓ = 6.36 m / s
voy = 6.36 m / s
a) at launch point r = 0 whereby L = 0
. b) let's find the position for maximum height, we can use kinematics, at this point the vertical speed is zero
vfy² = voy²- 2 g y
y = voy² / 2g
y = (6.36)²/2 9.8
y = 2.06 m
Let's calculate the angular momentum
L= ![\left[\begin{array}{ccc}i&j&k\\x&y&0\\px&0&0\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7Di%26j%26k%5C%5Cx%26y%260%5C%5Cpx%260%260%5Cend%7Barray%7D%5Cright%5D)
L = -px y k ^
L = - (m vox) (2.06) k ^
L = - 20 6.36 2.06 k ^
L = 262 k ^ Kg m² / s
The angular momentum is on the z axis
c) At the point of impact, at this point the height is zero and the position on the x-axis is the range
R = vo² sin 2θ / g
R = 9² sin (2 45) /9.8
R = 8.26 m
L =
L = - x py k ^
L = - x m voy
L = - 8.26 20 6.36 k ^
L = 1020.7 k^ kg m² /s