Answer:
540C.
Explanation:
A capacitor of capacitance C when charged to a voltage of V will have a charge Q given as follows;
Q = CV ----------(i)
From the question, the initial charge on the capacitor is the charge on it before it was connected to the resistor. In other words, the initial charge on the capacitor will have a maximum value which can be calculated using equation (i) above.
Where;
C = 6F
V = 90V
Substitute these values into equation (i) as follows;
Q = 6 x 90
Q = 540 C
Therefore, the initial charge on the capacitor is 540C.
Answer:
4,200 joules per kilogram per degree Celsius
Explanation:
The specific heat capacity of a material is the energy required to raise one kilogram (kg) of the material by one degree Celsius (°C). The specific heat capacity of water is 4,200 joules per kilogram per degree Celsius (J/kg°C). This means that it takes 4,200 J to raise the temperature of 1 kg of water by 1°C.
Answer:
The answer is B, although technically that is an eclipse.
Answer
given,
constant speed of cart on right side = 2 m/s
diameter of nozzle = 50 mm = 0.05 m
discharge flow through nozzle = 0.04 m³
One-fourth of the discharge flows down the incline
three-fourths flows up the incline
Power = ?
Normal force i.e. Fn acting on the cart

v is the velocity of jet
Q = A V


v = 20.37 m/s
u be the speed of cart assuming it to be u = 2 m/s
angle angle of inclination be 60°
now,

F n = 2295 N
now force along x direction



Power of the cart
P = F x v
P = 1987.52 x 20.37
P = 40485 watt
P = 40.5 kW
This problem is pretty straight forward since we are given
the half time and we simply have to find for the rate constant. The equation
relating the two variable is:
t1/2 = ln(2) / k
where k is the rate constant, therefore:
k = ln(2) / t1/2
k = ln(2) / 14.7 h
<span>k = 0.047 / hour</span>