Answer:
w= p∆v 50000 ( 0.55-0.40) and calculate and you get it
Answer:
film is at distance of 3.07 cm from lens
Explanation:
Given data
focal length = 3.06 cm
distance = 10.4 m = 1040 cm
to find out
How far must the lens
solution
we apply here lens formula that is
1/f = 1/p + 1/q
here f = 3.06 and p = 1040 so we find q
1/f = 1/p + 1/q
1/3.06 = 1/1040 + 1/q
1/ q = 0.3258
q = 3.0690 cm
so film is at distance of 3.07 cm from lens
Answer:
It's C because if you were trying to put it at rest that means you would put it on a Balanced surfest
Answer:
B Eight light-minutes
Explanation:
In the case when the distance separated earth and the sun so here we orbit the sun for a 150 million km distance and the light moves would be 300,000 kilometers per second
Now divide this
= 150 million ÷ 300,000 kilometers per second
= 500 seconds
This 500 seconds represent 8 minutes and 20 seconds
Hence, option B is correct