One redo our could be a body of water like a dam as such, and another is something like a retention pond, taking in water
Honey has more calories than sugar, so sugar is healthier
Answer:
Water
Explanation:
Molecular oxygen is the terminal electron acceptor and serves to receive electrons from reduced NADH and FADH2 to reoxidize them. NADH and FADH2 are formed during glycolysis and Kreb's cycle. These reducing powers should be re-oxidized to enter in the first two steps of aerobic respiration again.
For the purpose, NADH, and FADH2 transfer their electrons to the molecular oxygen via electron transport chain. After accepting the electrons, molecular oxygen is oxidized into the water molecule. Therefore, radioactive oxygen isotope would appear in the form of a water molecule after completion of cellular respiration.
Answer:
Each of the three fatty acid molecules undergoes an esterification with one of the hydroxyl groups of the glycerol molecule. The result is a large triester molecule referred to as a triglyceride. Figure 14.2. 4: A triglyceride molecule can be formed from any combination of fatty acids.
Explanation:I hope I can help you :)
Answer: DNA is a molecule made up of two strands, twisted around each other in a double helix shape. The two strands are complementary which have a 5 prime end and a 3 prime end. To understand this question you must first understand the steps that follow.
DNA Replication:
<u>Step one: </u>
DNA Helicase (unzips) separates the strands.
<u>Step two:</u>
DNA Primase starts the process and makes a small piece of RNA called a primer. This marks the starting point for the DNA.
<u>Step three:</u>
DNA Polymerase binds to the primer and will make the new strand of DNA. DNA Polymerase can only add DNA bases in one direction, from the 5 prime end to the 3 prime end.
- The leading strand is made continuously.
- The lagging strand does not run continuously because it runs in the opposite direction. Each fragment is started with an RNA primer. DNA Polymerase then adds a short row of DNA bases from the 5 prime to 3 prime direction. This results in okazaki fragments because it can only replicate in small chunks. The process is repeated.
<u>Step four:</u>
Once the new DNA is complete the enzyme exonuclease removes all the RNA primers from both strands of DNA.
<u>Step five:</u>
Another DNA Polymerase fills in the gaps that are left behind with DNA.
<u>Step six:</u>
DNA Ligase seals up the fragments in DNA, in both strands to make a continuous double strand.
<u>Final answer:</u>
DNA Replication cannot replicate at the same time due to the leading and lagging strand.
Good luck!