Answer:
2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.
12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution
Explanation:
First, by definition of solubility, in 100 g of water there are 0.0016 g of CaF₂. So, to know how many moles are 0.0016 g, you must know the molar mass of the compound. For that you know:
- Ca: 40 g/mole
- F: 19 g/mole
So the molar mass of CaF₂ is:
CaF₂= 40 g/mole + 2*19 g/mole= 78 g/mole
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 0.0016 grams of the compound how many moles are there?

moles=2.05*10⁻⁵
<u><em>2.05*10⁻⁵ moles of CF₂ can dissolve in 100 g of water.</em></u>
Now, to answer the following question, you can apply the following rule of three: if by definition of density in 1 mL there is 1 g of CaF₂, in 1000 mL (where 1L = 1000mL) how much mass of the compound is there?

mass of CaF₂= 1000 g
Now you can apply the following rule of three: if there are 78 grams of CaF₂ in 1 mole, in 1000 grams of the compound how many moles are there?

moles=12.82
<u><em>12.82 moles of CaF₂ will dissolve in exactly 1.00 L of solution</em></u>
Answer:
<h3>H2O (water)</h3><h3>N2 (nitrogen)</h3><h3>O3 (ozone)</h3><h3>CaO (calcium oxide)</h3><h3>
Explanation:</h3>
<u>H</u><u>OPE </u><u>IT</u><u> HELPS</u>
False because electrons are what help make up molecules, therefore they have to be smaller.
<span>Pre-1982 definition of STP: 37 g/mol
Post-1982 definition of STP: 38 g/mol
This problem is somewhat ambiguous because the definition of STP changed in 1982. Prior to 1982, the definition was 273.15 K at a pressure of 1 atmosphere (101325 Pascals). Since 1982, the definition is 273.15 K at a pressure of exactly 100000 Pascals). Because of those 2 different definitions, the volume of 1 mole of gas is either 22.414 Liters (pre 1982 definition), or 22.71098 liters (post 1982 definition). And finally, there's entirely too many text books out there that still use the 35 year obsolete definition. So let's solve this problem using both definitions and you need to pick the correct answer for the text book you're using.
First, determine how many moles of gas you have. Just simply divide the volume you have by the molar volume.
Pre-1982: 2.1 / 22.414 = 0.093691443 moles
Post-1982: 2.1 / 22.71098 = 0.092466287 moles
Now determine the molar mass. Simply divide the mass by the moles. So
Pre-1982: 3.5 g / 0.093691443 moles = 37.35666667 g/mol
Post-1982: 3.5 g / 0.092466287 moles = 37.85163333 g/mol
Finally, round to 2 significant figures. So
Pre-1982: 37 g/mol
Post-1982: 38 g/mol</span>