Answer: Option C is correct.
Explanation: Average kinetic energy is directly proportional to the absolute temperature. Higher the temperature means higher the kinetic energy.
Average kinetic energy is given by:

Where, k = Boltzman constant
T = Temperature
We are given different temperatures, so to compare they all should have the same units.
a) 298K
b) 267K
c) 27°C = 273+27 = 300K
d) 12°C = 273+12 = 285K
Looking at the temperature values, C part will have the highest average kinetic energy.
Answer:

Explanation:
Hello,
In this case, for the given reaction, the equilibrium constant turns out:
![Keq=\frac{[B]}{[A]}=\frac{0.5M}{1.5M} =1/3](https://tex.z-dn.net/?f=Keq%3D%5Cfrac%7B%5BB%5D%7D%7B%5BA%5D%7D%3D%5Cfrac%7B0.5M%7D%7B1.5M%7D%20%3D1%2F3)
Nonetheless, we are asked for the reverse equilibrium constant that is:

Which is greater than one.
In such a way, the Gibbs free energy turns out:

Now, since the reverse equilibrium constant is greater than zero its natural logarithm is positive, therefore with the initial minus, the Gibbs free energy is less than zero, that is, negative.
Water is a bent molecule, so it is polar.
Answer:
Among the very basic principles that guide scientists, as well as many other scholars, are those expressed as respect for the integrity of knowledge, collegiality, honesty, objectivity, and openness.
Explanation:
Principles are ideas based on scientific rules and laws that are generally accepted by scientists. They are fundamental truths that are the foundation for other studies. ... They are more like guiding ideas that scientists use to make predictions and develop new laws.
According to this formula:
㏑(K2/K1) = Ea/R(1/T1 - 1/T2)
when K is the rate constant
Ea is the activation energy
R is the universal gas constant
and T is the temperature K
when K is doubled so K2: K1 = 2:1 & R = 8.314 J.K^-1.mol^-1
and T1 = 10 +273 = 283 k & T2 = 21 + 273 = 294 k
So by substitution:
㏑2 =( Ea / 8.314) (1/283 - 1/294 )
∴ Ea = 43588.9 J/mol = 43.6 KJ/mol