Volume fraction = volume of the element / volume of the alloy
Volume = density * mass
Base: 100 grams of alloy
mass of tin = 15 grams
mass of lead = 85 grams
volume = mass / density
Volume of tin = 15g / 7.29 g/cm^3 = 2.06 cm^3
Volume of lead = 85 g / 11.27 g/cm^3 = 7.54 cm^3
Volume fraction of tin = 2.06 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.215
Volume fraction of lead = 7.54 cm^3 / (2.06 cm^3 + 7.54 cm^3) = 0.785
As you can verify the sum of the two volume fractions equals 1: 0.215 + 0.785 = 1.000
Answer:
Al2(SO4)3 and Mg(OH)2
Explanation:
1. Al has a charge of 3-, and SO4 of 2-
when you cross multiply the charges you get
Al2 and (SO4)3
*the reason theres a bracket around the sulfate ion is that the charge 3 is not for oxygen only, but the entire sulphate ion*
Hence, Al2(SO4)3
2. Mg has a charge of 2- and OH of 1-
again cross multiply
Mg (you dont need to add the 1) and (OH)2
again, the bracket around OH means the charge appiles to Oxygen AND hydrogen
hence, Mg(OH)2
We know that there are 100 cm in 1 m, so we can use this to convert to meters:

Therefore we know that
cm is equal to 2.41 m.
Answer:
B
Explanation:
B, H2O + Na The elements toward the bottom left corner of the periodic table are the metals that are the most active in the sense of being the most reactive. Lithium, sodium, and potassium all react with water,