Answer:
- 0.99 °C ≅ - 1.0 °C.
Explanation:
- We can solve this problem using the relation:
<em>ΔTf = (Kf)(m),</em>
where, ΔTf is the depression in the freezing point.
Kf is the molal freezing point depression constant of water = -1.86 °C/m,
m is the molality of the solution (m = moles of solute / kg of solvent = (23.5 g / 180.156 g/mol)/(0.245 kg) = 0.53 m.
<em>∴ ΔTf = (Kf)(m)</em> = (-1.86 °C/m)(0.53 m) =<em> - 0.99 °C ≅ - 1.0 °C.</em>
Like all objects, rockets are governed by Newton's Laws of Motion. The First Law describes how an object acts when no force is acting upon it. So, rockets stay still until a force is applied to move them. Newton's Third Law states that "every action has an equal and opposite reaction".
Answer:
The empirical formula of the compound C₃H₆N₂ is C₃H₆N₂
Explanation:
The empirical formula of a compound is the formula of the compound given in the (smallest) whole number ratio of the elements of the compound
The empirical formula of S₂O₂ is SO
The empirical formula of C₃H₆O₃ is CH₂O
The given compound's molecular formula is C₃H₆N₂
The smallest whole number ratio of of the elements of the compound is 3:6:2, therefore, the empirical formula of the compound C₃H₆N₂ is C₃H₆N₂.
Answer:
17.5 g
Explanation:
Given data
- Mass of solution to be prepared: 50.0 grams
- Concentration of the salt solution: 35.0%
The concentration by mass of NaCl in the solution is 35.0%, that is, there are 35.0 grams of sodium chloride per 100 grams of solution. We will use this ratio to find the mass of sodium chloride required to prepare 50.0 grams of a 35.0% salt solution.
