Answer:
41 g
Explanation:
We have a buffer formed by a weak acid (C₆H₅COOH) and its conjugate base (C₆H₅COO⁻ coming from NaC₆H₅COO). We can find the concentration of C₆H₅COO⁻ (and therefore of NaC₆H₅COO) using the Henderson-Hasselbach equation.
pH = pKa + log [C₆H₅COO⁻]/[C₆H₅COOH]
pH - pKa = log [C₆H₅COO⁻] - log [C₆H₅COOH]
log [C₆H₅COO⁻] = pH - pKa + log [C₆H₅COOH]
log [C₆H₅COO⁻] = 3.87 - (-log 6.5 × 10⁻⁵) + log 0.40
[C₆H₅COO⁻] = [NaC₆H₅COO] = 0.19 M
We can find the mass of NaC₆H₅COO using the following expression.
M = mass NaC₆H₅COO / molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = M × molar mass NaC₆H₅COO × liters of solution
mass NaC₆H₅COO = 0.19 mol/L × 144.1032 g/mol × 1.5 L
mass NaC₆H₅COO = 41 g
Nuclear energy comes from splitting of Barium atom to form Krypton atom
Primary:
Grasshopper
Mouse
Grass
Secondary:
Hawk
Snake
Coyote
Answer:
Below:
Explanation:
To calculate an energy change for a reaction: add together the bond energies for all the bonds in the reactants - this is the 'energy in' add together the bond energies for all the bonds in the products - this is the 'energy out.
Hope it helps....
It's Muska
Answer:224
Explanation:
We should answer it with Stoichiometry
We say: 20 g H2× (1 mol/ 2g)× ( 22.4 lit/ 1 mol) = 224
Means: we have 20 grams and every 2g H2, equals to 1 mol of it and every 1 mol of H2, equals to 22.4 lit( because of STP)
hope you got this:)