The answer is A I hope it was right
<span>Blood pH has an ideal level of about 7.3 to 7.4. It is important for the pH ofblood to remain constant because if your blood pH varies, itcan be deadly.<span>hope this helps </span></span>
Answer: 2 lone pairs, square planar
Explanation:
Using the VSEPR ( Valence Shell Electron Pair Repulsion)Theory
To calculate the number of lone pairs electron can be done using the formula;
Number of electrons = ½ (V+N-C+A)
V mean valency of the central atom
N means number of monovalent bonding atoms
C means charge on cation
A means charges on anion
Therefore, to calculate the number of lone pair electron C=A=0;
Number of electrons = ½ (8+4) = 12/2 = 6
Number of bonding pair = 4
Number of lone pairs of electron = 6-4 = 2
The hybridrization of the compound is sp3d2 because the number of electrons around the central atom is 6.
The geometry of the compound is square planar and this is because of the repulsion between the bonding pair of electrons and lone pair of electrons which causes the lone pair of electrons to lie in a perpendicular plane in order to acquire stability.
2.43*1000.
There are 1000 grams in a kilogram
Answer:
Here you go! 50% of your writing piece
Explanation:
Foods produced from or using GM organisms are often referred to as GM foods.
GM foods are developed and marketed because there is some advantage either to the producer or consumer of these GM foods. GM seed developers wanted their products to be accepted by producers and have concentrated on innovations that bring direct benefit to farmers and generally the food industry.
One objective for developing plants based on GM organisms is to improve crop protection. The GM crops currently on the market are mainly aimed at an increased level of crop protection through the introduction of resistance against plant diseases caused by insects or viruses or through increased tolerance towards herbicides.
Resistance against insects is achieved by incorporating into the food plant the gene for toxin production from the bacterium Bacillus thuringiensis. GM crops that inherently produce this toxin have been shown to require lower quantities of insecticides in specific situations, where pest pressure is high.