A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
<h3>What does Beer-Lambert law state?</h3>
The Beer-Lambert law states that for a given material sample, path length and concentration of the sample are directly proportional to the absorbance of the light.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, we can calculate the molarity of the solution using the following expression.
A = ε × b × c
c = A / ε × b
c = 0.2 / (59 cm⁻¹ M⁻¹) × 1 cm = 0.003 M
where,
- A is the absorbance.
- ε is the path length.
- b is the molar absorptivity coefficient.
- c is the molar concentration.
A solution has an absorbance of 0.2 with a path length of 1 cm. Given the molar absorptivity coefficient is 59 cm⁻¹ M⁻¹, the molarity is 0.003 M.
Learn more about the Beer-Lambert law here: brainly.com/question/12975133
Answer: -
The rate decreases as the concentration of the reactants decreases
Explanation: -
A reaction involves change of the reactants into products.
Initially there is only reactants. So the rate if reaction is high.
After some time there are products. So the amount of reactant is less.
Reactions involve collisions of reactant molecules. As the reactant amount decreases, collisions between the reactants decreases. As such the rate of reaction decreases with the progress of the reaction.
Answer:
A the answer is A I'm sure
Answer:
3. Inverse 1. Direct
Explanation:
P- pressure
V - volume
T - temperature
P1*V1 / T1 = P2*V2 / T2 ...... (1)
That's the general gas law with the combined ideas of charles, boyle & lussac.
Whenever you are restricted as "constant" temperature, volume, or pressure...cancel them off of your equation.
in this case 3. is indirectly telling us to cancel the temperature (T).
so we'll be left w P1*V1 = P2*V2
now notice that any relation ship that is multiplied like the one above consists of inversely related quantities. & so we conclude that-
P & V are inversely proportional or have an inverse relationship.
similarly in 1. we'll cancel p off of the general formula (1)
to be left with V1/T1 = V2/T2
also note that quantities involved in division are directly related to each other & hence the answer.