Answer : The half life of 28-Mg in hours is, 6.94
Explanation :
First we have to calculate the rate constant.
Expression for rate law for first order kinetics is given by:

where,
k = rate constant
t = time passed by the sample = 48.0 hr
a = initial amount of the reactant disintegrate = 53500
a - x = amount left after decay process disintegrate = 53500 - 10980 = 42520
Now put all the given values in above equation, we get


Now we have to calculate the half-life.



Therefore, the half life of 28-Mg in hours is, 6.94
Answer:
1000 µL; 10 µL
Explanation:
A p1000 micropipet is set to dispense 1000 µL.
A p10 micropipet set to dispense 10 µL.
Explanation:
the conductors are the three u have checked
Answer: You’d have to convert from mol to molecule.
Explanation: Like this:
Answer:
The volume of 6.62×10⁻³moles of HF at STP is 148.38×10⁻³ L
Explanation:
Given data:
Number of moles of HF = 6.62×10⁻³ mol
Volume of HF in litter at STP = ?
Solution:
The given problem will be solve by using general gas equation,
PV = nRT
P= Pressure
V = volume
n = number of moles
R = general gas constant = 0.0821 atm.L/ mol.K
T = temperature in kelvin
Standard temperature = 273 K
Standard pressure = 1 atm
Now we will put the values in formula.
1 atm × V = 6.62×10⁻³mol ×0.0821 atm.L/ mol.K × 273 K
V = 6.62×10⁻³mol ×0.0821 atm.L/ mol.K × 273 K / 1 atm
V = 148.38×10⁻³ L
Thus, the volume of 6.62×10⁻³moles of HF at STP is 148.38×10⁻³ L.