Answer:
192.08J
19.6m/s
Explanation:
Since there will be no potential energy when the ball is on the ground, the change in potential energy is equal to the potential energy at the start when the ball is 19.6m above the ground.
PE=mgh
=(1)(9.8)(19.6)
=192.08J
v²=u²+2as, where v is the final velocity, u is initial velocity, a is acceleration and s is distance. Initial velocity is 0 since it starts at rest.
v²=u²+2as
v²=0²+2(9.8)(19.6)
v=√384.16
=19.6m/s
<em>12,25 km/h</em>
<em>≈ 3,4 m/s </em>
<em>v = d/t</em>
<em>= 12250m/h</em>
<em>= 12,25km/h</em>
<em>or</em>
<em>v = d/t</em>
<em>= 12250m/h</em>
<em>1h = 60m×60s = 3600s</em>
<em>= 12250m/3600s</em>
<em>≈ 3,4 m/s </em>
<h3><u>Answer;</u></h3>
volume = 6.3 × 10^-2 L
<h3><u>Explanation</u>;</h3>
Volume = mass/density
Mass = 0.0565 Kg,
Density = 900 kg/m³
= 0.0565 kg/ 900 kg /m³
= 6.3 × 10^-5 M³
but; 1000 L = 1 m³
Hence, <u>volume = 6.3 × 10^-2 L</u>
Answer:
Yes
Explanation:
When an object has more mass it takes more gravity to keep it down therefore producing friction which in return reduces the amount of kinetic energy created. A change in an object's speed has an greater effect on its kinetic energy. than a change in its mass has, because kinetic energy is proportional to.