Answer:
f = 1.69*10^5 Hz
Explanation:
In order to calculate the frequency of the sinusoidal voltage, you use the following formula:
(1)
V_L: voltage = 12.0V
i: current = 2.40mA = 2.40*10^-3 A
L: inductance = 4.70mH = 4.70*10^-3 H
f: frequency = ?
you solve the equation (1) for f and replace the values of the other parameters:
The frequency of the sinusoidal voltage is f
Answer:
Density is defined as mass per unit volume. its SI unit is: kg/m³
Explanation:
Answer: -31.36 m/s
Explanation:
This is a problem of motion in one direction (specifically vertical motion), and the equation that best fulfills this approach is:
(1)
Where:
is the final velocity of the supply bag
is the initial velocity of the supply bag (we know it is zero because we are told it was "dropped", this means it goes to ground in free fall)
is the acceleration due gravity (the negtive sign indicates the gravity is downwards, in the direction of the center of the Earth)
is the time
Knowing this, let's solve (1):
(2)
Finally:
Note the negative sign is because the direction of the bag is downwards as well.
<u>In modern physics</u>, as it was called "Stefan-Boltzmann law", the total energy radiated per unit surface area of a black body is directly proportional to the fourth power of the black body's temperature T
as:

where: P is the power (total energy radiated per second per square meter) and T is the temperature of a black body.
then we can make a ratio between the state of before quadruple (with subscript 1) and after (with subscript 2) as:

As

Then

then

- The factor will the total energy radiated per second per square meter increase = 256
-- What's the volume of a cylinder with radius=1m and height=55m ?
( Volume of a cylinder = π R² h )
-- How much does that volume of water weigh ?
1 liter of water = 1 kilogram of mass
Weight = (mass) x (acceleration of gravity)
-- What's the area of the bottom of that 1m-radius cylinder ?
Pressure = (force) / (area)