Δ=88
1) Using the Quadratic Equation to Solve
3x²-8x+1=3
3x²-8x+1-3=3-3
3x² -8x -2=0
2)Let's find the discriminant
Δ= (-8)²-4(3)(-2)
Δ=64 -4(3)(-2)
Δ=88
Answer:
The answer is below
Step-by-step explanation:
Given the system of equations:
x + y + 2z = 9
2x + 4y - 3z = 1
3x + 6y - 5z = 0
This system of equation can be solved using matrix. This done by first representing the equations as matrix and then solving:
The matrix form is:
![\left[\begin{array}{ccc}1&1&2\\2&4&-3\\3&6&-5\end{array}\right] \left[\begin{array}{c}x\\y\\z\end{array}\right] = \left[\begin{array}{c}9\\1\\0\end{array}\right] \\\\\\ \left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}1&1&2\\2&4&-3\\3&6&-5\end{array}\right] ^{-1} \left[\begin{array}{c}9\\1\\0\end{array}\right] \\\\\\](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C2%264%26-3%5C%5C3%266%26-5%5Cend%7Barray%7D%5Cright%5D%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D9%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D1%261%262%5C%5C2%264%26-3%5C%5C3%266%26-5%5Cend%7Barray%7D%5Cright%5D%20%20%5E%7B-1%7D%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D9%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C)
![\left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{ccc}2&-17&11\\-1&11&-7\\0&3&-2\end{array}\right] \left[\begin{array}{c}9\\1\\0\end{array}\right] \\\\\\ \left[\begin{array}{c}x\\y\\z\end{array}\right] =\left[\begin{array}{c}1\\2\\3\end{array}\right]](https://tex.z-dn.net/?f=%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bccc%7D2%26-17%2611%5C%5C-1%2611%26-7%5C%5C0%263%26-2%5Cend%7Barray%7D%5Cright%5D%20%20%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D9%5C%5C1%5C%5C0%5Cend%7Barray%7D%5Cright%5D%20%5C%5C%5C%5C%5C%5C%20%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7Dx%5C%5Cy%5C%5Cz%5Cend%7Barray%7D%5Cright%5D%20%3D%5Cleft%5B%5Cbegin%7Barray%7D%7Bc%7D1%5C%5C2%5C%5C3%5Cend%7Barray%7D%5Cright%5D)
5(2x-3) is the factored version