The answer is $10
if you add up the total price for each of the items it totals to $40, she has $50 so $50-$40=$10
Answer:
AP is 11.25 so the answer is F
Step-by-step explanation:
Since they are similar triangles (due to the ~ symbol)
You can write this:
AC/XZ = AP/XQ
since XZ=12
XQ=5
AC=27
you can write:
27/12=AP/5
then cross multiply:
27x5=135
135/12=11.25
AP is 11.25
This is rationalising the denominator of an imaginary fraction. We want to remove all i's from the denominator.
To do this, we multiply the fraction by 1. However 1 can be expressed in an infinite number of ways. For example, 1 = 2/2 = 3/3 = 4n^2 / 4n^2 (assuming n is not zero!). Let's express 1 as the complex conjugate of the denominator, divided by the complex conjugate of the denominator.
The complex conjugate of (3 - 2i) is (3 + 2i). Then do what I just said:
4/(3-2i) * (3+2i)/(3+2i) = 4(3+2i)/(3-2i)(3+2i) = (12+8i)/(9-4i^2) = (12+8i)/(9+4) = (12+8i)/13
This is the answer you are looking for. I hope this helps :)
Answer: a. 0.61
b. 0.37
c. 0.63
Step-by-step explanation:
From the question,
P(A) = 0.39 and P(B) = 0.24
P(success) + P( failure) = 1
A) What is the probability that the component does not fail the test?
Since A is the event that the component fails a particular test, the probability that the component does not fail the test will be P(success). This will be:
= 1 - P(A)
= 1 - 0.39
= 0.61
B) What is the probability that a component works perfectly well (i.e., neither displays strain nor fails the test)?
This will be the probability that the component does not fail the test minus the event that the component displays strain but does not actually fail. This will be:
= [1 - P(A)] - P(B)
= 0.61 - 0.24
= 0.37
C) What is the probability that the component either fails or shows strain in the test?
This will simply be:
= 1 - P(probability that a component works perfectly well)
= 1 - 0.37
= 0.63
<h2>4500 x 6700-577=30149423</h2>