THE ANSWER SHOULD BE 22.70
I think that the sum will always be a rational number
let's prove that
<span>any rational number can be represented as a/b where a and b are integers and b≠0
</span>and an integer is the counting numbers plus their negatives and 0
so like -4,-3,-2,-1,0,1,2,3,4....
<span>so, 2 rational numbers can be represented as
</span>a/b and c/d (where a,b,c,d are all integers and b≠0 and d≠0)
their sum is
a/b+c/d=
ad/bd+bc/bd=
(ad+bc)/bd
1. the numerator and denominator will be integers
2. that the denominator does not equal 0
alright
1.
we started with that they are all integers
ab+bc=?
if we multiply any 2 integers, we get an integer
<span>like 3*4=12 or -3*4=-12 or -3*-4=12, etc.
</span>even 0*4=0, that's an integer
the sum of any 2 integers is an integer
like 4+3=7, 3+(-4)=-1, 3+0=3, etc.
so we have established that the numerator is an integer
now the denominator
that is just a product of 2 integers so it is an integer
<span>2. we originally defined that b≠0 and d≠0 so we're good
</span>therefore, the sum of any 2 rational numbers will always be a rational number <span>is the correct answer.</span>
Answer:
A) 
B) 
Step-by-step explanation:
A survey of 46 college athletes found that
- 24 played volleyball,
- 22 played basketball.
A) If we pick one athlete survey participant at random, the probability they play basketball is

B) If we pick 2 athletes at random (without replacement),
- the probability we get one volleyball player is

- the probability we get another basketball player is
(only 45 athletes left).
Thus, the probability we get one volleyball player and one basketball player is

The image is answer.................
Answer:
G^Y boyyyy
Step-by-step explanation:
no because the answer will not apear until you pay attention in class bum