All cells are living however organelles are not living there are no organisms that consist of just a single cell
Answer:
The maximum amount of work is
Explanation:
From the question we are told that
The temperature of the environment is 
The volume of container A is 
Initially the number of moles is 
The volume of container B is 
At equilibrium of the gas the maximum work that can be done on the turbine is mathematically represented as
Now from the Ideal gas law

So substituting for
in the equation above
![W = nRT ln [\frac{V_B}{V_A} ]](https://tex.z-dn.net/?f=W%20%3D%20%20nRT%20ln%20%5B%5Cfrac%7BV_B%7D%7BV_A%7D%20%5D)
Where R is the gas constant with a values of 
Substituting values we have that
Answer:
2.69 m/s
Explanation:
Hi!
First lets find the position of the train as a function of time as seen by the passenger when he arrives to the train station. For this state, the train is at a position x0 given by:
x0 = (1/2)(0.42m/s^2)*(6.4s)^2 = 8.6016 m
So, the position as a function of time is:
xT(t)=(1/2)(0.42m/s^2)t^2 + x0 = (1/2)(0.42m/s^2)t^2 + 8.6016 m
Now, if the passanger is moving at a constant velocity of V, his position as a fucntion of time is given by:
xP(t)=V*t
In order for the passenger to catch the train
xP(t)=xT(t)
(1/2)(0.42m/s^2)t^2 + 8.6016 m = V*t
To solve this equation for t we make use of the quadratic formula, which has real solutions whenever its determinat is grater than zero:
0≤ b^2-4*a*c = V^2 - 4 * ((1/2)(0.42m/s^2)) * 8.6016 m =V^2 - 7.22534(m/s)^2
This equation give us the minimum velocity the passenger must have in order to catch the train:
V^2 - 7.22534(m/s)^2 = 0
V^2 = 7.22534(m/s)^2
V = 2.6879 m/s