a) For the motion of car with uniform velocity we have ,
, where s is the displacement, u is the initial velocity, t is the time taken a is the acceleration.
In this case s = 520 m, t = 223 seconds, a =0 
Substituting

The constant velocity of car a = 2.33 m/s
b) We have 
s = 520 m, t = 223 seconds, u =0 m/s
Substituting

Now we have v = u+at, where v is the final velocity
Substituting
v = 0+0.0209*223 = 4.66 m/s
So final velocity of car b = 4.66 m/s
c) Acceleration = 0.0209 
I like fortnite too:):):)
Answer:
123.30 m
Explanation:
Given
Speed, u = 22 m/s
acceleration, a = 1.40 m/s²
time, t = 7.30 s
From equation of motion,
v = u + at
where,
v is the final velocity
u is the initial velocity
a is the acceleration
t is time
V = at + U
using equation v - u = at to get line equation for the graph of the motion of the train on the incline plane
where m is the slope
Comparing equation (1) and (2)

a = m
Since the train slows down with a constant acceleration of magnitude 1.40 m/s² when going up the incline plane. This implies the train is decelerating. Therefore, the train is experiencing negative acceleration.
a = - 1.40 m/s²
Sunstituting a = - 1.40 m/s² and u = 22 m/s


The speed of the train at 7.30 s is 11.78 m/s.
The distance traveled after 7.30 sec on the incline is the area cover on the incline under the specific interval.
Area of triangle + Area of rectangle
![[\frac{1}{2} * (22 - 11.78) * (7.30)] + [(11.78 - 0) * (7.30)]](https://tex.z-dn.net/?f=%5B%5Cfrac%7B1%7D%7B2%7D%20%2A%20%2822%20-%2011.78%29%20%2A%20%287.30%29%5D%20%20%2B%20%5B%2811.78%20-%200%29%20%2A%20%287.30%29%5D)
= 37.303 + 85.994
= 123. 297 m
≈ 123. 30 m
Answer:
H = 34.43 m
Explanation:
Given that,
Initial speed of the object, u = 30 m/s
The angle of projection, 
We need to find the maximum height reached by the object. Let it is H. Using the formula for maximum height reached by the projectile.

So, the maximum height reached by the object is 34.43 m.