Answer:
Hydraulic brake systems are used as the main braking system on almost all passenger vehicles and light trucks. Hydraulic brakes use brake fluid to transmit force when the brakes are applied.
Explanation:
Answer:

Explanation:
Take at look to the picture I attached you, using Kirchhoff's current law we get:

This is a separable first order differential equation, let's solve it step by step:
Express the equation this way:

integrate both sides, the left side will be integrated from an initial voltage v to a final voltage V, and the right side from an initial time 0 to a final time t:

Evaluating the integrals:

natural logarithm to both sides in order to isolate V:

Where the term RC is called time constant and is given by:

-- Class I lever
The fulcrum is between the effort and the load.
The Mechanical Advantage can be anything, more or less than 1 .
Example: a see-saw
-- Class II lever
The load is between the fulcrum and the effort.
The Mechanical Advantage is always greater than 1 .
Example: a nut-cracker, a garlic press
-- Class III lever
The effort is between the fulcrum and the load.
The Mechanical Advantage is always less than 1 .
I can't think of an example right now.
Answer:
Efficiency = StartFraction T Subscript h Baseline minus T Subscript C Baseline over T Subscript h Baseline EndFraction times 100. Efficiency equals T Subscript c Baseline minus T Subscript h Baseline over T Subscript h Baseline all times 100.