Answer
given,
gauge pressure = 1.94 x 10⁵ Pa
Pressure due to 4.90 m column of water
= ρ g h
= (4.90) x (1000) x (9.8) Pa
= 48020 Pa
Gauge pressure of second floor faucet
= 1.94 x 10⁵Pa - 48020 Pa
P_g= 145980 Pa
( b )
Let h = height of faucet from which no water can flow even if open
P = ρ g h
1.94 x 10⁵ = h x(1000) x (9.8)
h = 19.79 m
The loss of matter is called the mass defect. The missing matter is converted into energy. You can actually calculate the amount of energy produced during a nuclear reaction with fairly simple equation developed by Albert Einstein; E = mc^2. In this equation, E is the amount of energy produced, m is the missing mass, or the mass defect, and c is the speed of light, which is a rather large number. The speed of light is squared, making that part of the equation a very large number that, even when multiplied by a small amount of mass, yields a large amount of energy.
The answer to the question is True
Answer:
The answer is option A.
You speed up 8 m/s every second
Hope this helps you
Answer:
Explanation:
The unknown charge can not remain in between the charge given because force on the middle charge will act in the same direction due to both the remaining charges.
So the unknown charge is somewhere on negative side of x axis . Its charge will be negative . Let it be - Q and let it be at distance - x on x axis.
force on it due to rest of the charges will be equal and opposite so
k3q Q / x² =k 8q Q / (L+x)²
8x² = 3 (L+x)²
2√2 x = √3 (L+x)
2√2 x - √3 x = √3 L
x(2√2 - √3 ) = √3 L
x = √3 L / (2√2 - √3 )
Let us consider the balancing force on 3q
force on it due to -Q and -8q will be equal
kQ . 3q / x² = k3q 8q / L²
Q = 8q (x² / L²)
so charge required = - 8q (x² / L²)
and its distance from x on negative x side = √3 L / (2√2 - √3 )