1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
scZoUnD [109]
3 years ago
9

The moon's surface becomes hot during the long lunar day because the sun transfers heat to the moon

Physics
1 answer:
In-s [12.5K]3 years ago
7 0
Radiation would be the answer (:
You might be interested in
The chart below shows the average surface temperature or temperature range for each of the eight planets.
Vaselesa [24]

Answer:

A) Earth and the other inner planets have higher average surface temperatures than the outer planets.

Explanation:

the earth and the other inner planets have higher average surface temperatures than the outer planets.

The reason for this response is due to the distance between the sun and the respective planet, the source of energy generation is the sun and the only way in which the temperature increase of each planet is guaranteed is by radiation, the further away a planet is from its star, its temperature will decrease. Although it is also important to highlight the atmospheric composition of the planet if this planet in its stratosphere has high density clouds that do not allow the entry of solar radiation, the temperature of the planet's surface will not increase, independent of the distance from the sun, but these are more complex cases where specialists in that area enter to perform a study in detail.

4 0
3 years ago
Read 2 more answers
Why is water pollution a concern if water is continuously cycled through Earth’s systems?
kati45 [8]

Answer:Water pollution is a concern because since it is cycled threw the earths system it effect the earths system in a negative way.

Explanation:

I would wait for someone else to answer just in case I’m wrong.

7 0
3 years ago
An 50kg car travels at 2m/s. What is the car's Kinetic energy? <br> 100J<br> 200J<br> 50J
Evgen [1.6K]

Answer:

The answer is 100J.

Explanation:

In classical mechanics, kinetic energy (KE) is equal to half of an object's mass (1/2*m) multiplied by the velocity squared. In this question, the mass is equals to 50kg and the velocity is 2m/s

Now,

25kg×4m/s^2 = 100kgm/s^2 or 100J

3 0
2 years ago
Describe the earth's rotation on it axis
Lisa [10]
<span>Earth's rotation is the rotation of the planet Earth around its own axis. The Earth rotates from the west towards east. As viewed from North Star or polestar Polaris, the Earth turns counter-clockwise.</span>
3 0
3 years ago
Read 2 more answers
In a second experiment, you decide to connect a string which has length L from a pivot to the side of block A (which has width d
Salsk061 [2.6K]

Answer:

The answer is in the explanation

Explanation:

A)

i) The blocks will come to rest when all their initial kinetic energy is dissipated by the friction force acting on them. Since block A has higher initial kinetic energy, on account of having larger mass, therefore one can argue that block A will go farther befoe coming to rest.

ii) The force on friction acting on the blocks is proportional to their mass, since mass of block B is less than block A, the force of friction acting on block B is also less. Hence, one might argue that block B will go farther along the table before coming to rest.

B) The equation of motion for block A is

m_{A}\frac{\mathrm{d} v}{\mathrm{d} t} = -m_{A}g\nu_{s}\Rightarrow \frac{\mathrm{d} v}{\mathrm{d} t} = -\nu_{s}g \quad (1)

Here, \nu_{s} is the coefficient of friction between the block and the surface of the table. Equation (1) can be easily integrated to get

v(t) = C-\nu_{s}gt \quad (2)

Here, C is the constant of integration, which can be determined by using the initial condition

v(t=0) = v_{0}\Rightarrow C = v_{0} \quad (3)

Hence

v(t) = v_{0} - \nu_{s}gt \quad (4)

Block A will stop when its velocity will become zero,i.e

0 = v_{0}-\nu_{s}gT\Rightarrow T = \frac{v_{0}}{\nu_{s}g} \quad (5)

Going back to equation (4), we can write it as

\frac{\mathrm{d} x}{\mathrm{d} t} = v_{0}-\nu_{s}gt\Rightarrow x(t) = v_{0}t-\nu_{s}g\frac{t^{2}}{2}+D \quad (6)

Here, x(t) is the distance travelled by the block and D is again a constant of integration which can be determined by imposing the initial condition

x(t=0) = 0\Rightarrow D = 0 \quad (7)

The distance travelled by block A before stopping is

x(t=T) = v_{0}T-\nu_{s}g\frac{T^{2}}{2} = v_{0}\frac{v_{0}}{\nu_{s}g}-\nu_{s}g\frac{v_{0}^{2}}{2\nu_{s}^{2}g^{2}} = \frac{v_{0}^{2}}{2\nu_{s}g} \quad (8)

C) We can see that the expression for the distance travelled for block A is independent of its mass, therefore if we do the calculation for block B we will get the same result. Hence the reasoning for Student A and Student B are both correct, the effect of having larger initial energy due to larger mass is cancelled out by the effect of larger frictional force due to larger mass.

D)

i) The block A is moving in a circle of radius L+\frac{d}{2} , centered at the pivot, this is the distance of pivot from the center of mass of the block (assuming the block has uniform mass density). Because of circular motion there must be a centripetal force acting on the block in the radial direction, that must be provided by the tension in the string. Hence

T = \frac{m_{A}v^{2}}{L+\frac{d}{2}} \quad (9)

The speed of the block decreases with time due to friction, hence the speed of the block is maximum at the beginning of the motion, therfore the maximum tension is

T_{max} = \frac{m_{A}v_{0}^{2}}{L+\frac{d}{2}} \quad (10)

ii) The forces acting on the block are

a) Tension: Acting in the radially inwards direction, hence it is always perpendicular to the velocity of the block, therefore it does not change the speed of the block.

b) Friction: Acting tangentially, in the direction opposite to the velocity of the block at any given time, therefore it decreases the speed of the block.

The speed decreases linearly with time in the same manner as derived in part (C), using the expression for tension in part (D)(i) we can see that the tension in the string also decreases with time (in a quadratic manner to be specific).

8 0
3 years ago
Other questions:
  • A block of mass 3.6 kg, sliding on a horizontal plane, is released with a velocity of 1.7 m/s. The block slides and stops at a d
    7·1 answer
  • anice is watching her granddaughter drive a Barbie Jeep with a 6 V battery and an electric motor with 5 ohm of resistance. How m
    13·2 answers
  • The "dielectric strength" is the electric field magnitude at which a substance begins to spark. Air begins to conduct or spark w
    10·1 answer
  • (a) What resonant frequency would you expect from blowing across the top of an empty soda bottle that is 18 cm deep, if you assu
    6·1 answer
  • Two wooden crates rest on top of one another. The smaller top crate has a mass of m1 = 25 kg and the larger bottom crate has a m
    14·1 answer
  • How much heat is required to increase the temperature of 1 kg of steel from 21 °C to 22 °C?
    14·1 answer
  • Which planet moves the fastest
    7·2 answers
  • Calculate the self-inductance (in mH) of a 45.0 cm long, 10.0 cm diameter solenoid having 1000 loops. mH (b) How much energy (in
    9·1 answer
  • Which sentence accurately uses the homophones “they’re,” “there,” or “their”?
    11·2 answers
  • The velocity (in m/s) of a free-falling object as a function of the height from which it is dropped is
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!