The wavelength of the note is

. Since the speed of the wave is the speed of sound,

, the frequency of the note is

Then, we know that the frequency of a vibrating string is related to the tension T of the string and its length L by

where

is the linear mass density of our string.
Using the value of the tension, T=160 N, and the frequency we just found, we can calculate the length of the string, L:
Answer:
True
Explanation:
Velocity is a vector quantity, which means that it carries both magnitude and direction. Hence when direction of a particle changes, although magnitude (speed) may remain same, it's velocity changes due to direction change. For ex. A particle is m... A particle is moving along x axis with speed 1m/s, it's velocity will be represented as 1i (i represents unit vector along x)
But if it now starts moving along y axis, it's velocity is 1j (j represents unit vector along y axis). Hence velocity changes with direction.
brainllest pls .
D. because the statue has a new chemical called patina. It is no longer copper.
Answer:
169.74 N
Explanation:
Given,
Mass of the girl = 30 Kg
angle of the rope with vertical, θ = 30°
equating the vertical component of the tension
vertical component of the tension is equal to the weight of the girl.
T cos θ = m g
T cos 30° = 30 x 9.8
T = 339.48 N
Tension on the two ropes is equal to 339.48 N
Tension in each of the rope = T/2
= 339.48/2 = 169.74 N
Hence, the tension in each of the rope is equal to 169.74 N
882 divided by 9.81 (this is acceleration due to gravity) it equals 89.91