1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Novosadov [1.4K]
3 years ago
6

Please help me asdrtyuio

Physics
1 answer:
marta [7]3 years ago
4 0

Answer:

9. The Sun's Gravity

10. The core is the densest layer

You might be interested in
A violin string that is 50.0 cm long has a fundamental frequency of 440 Hz. What is the
amid [387]
For a standing wave on a string, the wavelength is equal to twice the length of the string:
\lambda=2 L
In our problem, L=50.0 cm=0.50 m, therefore the wavelength of the wave is
\lambda = 2 \cdot 0.50 m = 1.00 m

And the speed of the wave is given by the product between the frequency and the wavelength of the wave:
v=\lambda f = (1.00 m)(440 Hz)=440 m/s
5 0
3 years ago
Read 2 more answers
A 8.2-V battery is connected in series with a 38-mH inductor, a 150-Ω resistor, and an open switch.A 8.2-V battery is connected
tigry1 [53]

Answer:

(A). The current in the circuit is 19.25 mA.

(B). The store energy in the inductor is 7.04 μJ.

Explanation:

Given that,

Voltage = 8.2 V

Inductor = 38 mH

Resistance = 150 Ω

Time t = 0.110 ms

The battery has negligible internal resistance, so that the total resistance  in the circuit is 150 ohms. Then use this equation for current at time t in terms of inductance

We need to calculate the current

Using formula of current

I(t)=\dfrac{V}{R}\times(1-e^{-t\times\dfrac{R}{L}})

Put the value into the formula

I(t)=\dfrac{8.2}{150}\times(1-e^{-0.110\times10^{-3}\times\dfrac{150}{38\times10^{-3}}})

I(t)=0.01925\ A

I(t) = 19.25\ mA

(B). We need to calculate the store energy in the inductor

Using formula of energy

E=\dfrac{1}{2}LI^2

Put the value into the formula

E=\dfrac{1}{2}\times38\times10^{-3}\times(0.01925)^2

E=7.04\times10^{-6}\ J

{tex]E=7.04\ \mu J[/tex]

Hence, (A). The current in the circuit is 19.25 mA.

(B). The store energy in the inductor is 7.04 μJ.

8 0
2 years ago
The gravitational force,F, on a rocket at a distance,r, from the center of the earth isgiven byF=kr2wherek= 1013N·km2. (Newton·k
Brrunno [24]

Answer:

The gravitational force changing velocity is

\frac{dF}{dt}=-8\frac{N}{s}

Explanation:

The expression for the gravitational force is

F=\frac{k}{r^{2}}\\\\k=10x10^{13} N*km^{2}\\\\r=10x10^{4} km\\\\V=0.4 \frac{km}{s}

Differentiate the above equation

\frac{dF}{dt}=\frac{k}{r^{2}}\\\frac{dF}{dt}=k*r^{-2}\\\frac{dF}{dt}=-2*k*r^{-3} \frac{dr}{dt}\\\frac{dF}{dt}=\frac{-2k}{r^{3}}\frac{dr}{dt}

The velocity is the distance in at time so

V=\frac{dr}{dt}=0.4 \frac{km}{s}

\frac{dF}{dt}=\frac{-2*k}{r^{3}}*0.4\\\frac{dF}{dt}=\frac{-8*10x^{13}N*km^{2} }{(10x10^{4}) ^{3}} \\\frac{dF}{dt}=\frac{-8x10^{12} }{1x10^{12}}

\frac{dF}{dt}=-8\frac{N}{s}

8 0
3 years ago
Dakdadakdadakdadakda
notsponge [240]

Answer: dakdadakdadakdadakda

Explanation:(sings) blah blah blah middle fingers in the air l-l-l-loser

4 0
2 years ago
The front 1.20 m of a 1,600-kg car is designed as a "crumple zone" that collapses to absorb the shock of a collision. (a) If a c
eimsori [14]

To develop the problem it is necessary to apply the kinematic equations for the description of the position, speed and acceleration.

In turn, we will resort to the application of Newton's second law.

PART A) For the first part we look for the time, in a constant acceleration, knowing the speeds and the displacement therefore we know that,

X_f = X_i +\frac{1}{2}(V_i+V_f)t

Where,

X = Desplazamiento

V = Velocity

t = Time

In this case there is no initial displacement or initial velocity, therefore

X_f = \frac{1}{2} (V_i+V_f)t

Clearing for time,

t = \frac{2X_f}{(V_i+V_f)}

t = \frac{2*1.2}{24+0}

t = 0.1s

PART B) This is a question about the impulse of bodies, where we turn to Newton's second law, because:

F = ma

Where,

m=mass

a = acceleration

Acceleration can also be written as,

a= \frac{\Delta V}{t}

Then

F = m\frac{\Delta V}{t}

F = m\frac{V_f-V_i}{t}

F = m\frac{-V_i}{t}

F = \frac{(1600kg)(-24m/s)}{(0.1s)}

F = -384000N

Negative symbol is because the force is opposite of the direction of moton.

PART C) Acceleration through kinematics equation is defined as

V_f^2=V_i^2-2ax

0 = (24m/s)^2-2*a(1.2m)

a = \frac{(24m/s)^2}{1.2m}

a=480m/s^2

The gravity is equal to 0.8, then the acceleration is

a = 480*\frac{g}{9.8}

a = 53.3g

3 0
3 years ago
Other questions:
  • A table of mass 10 kg is lifted so that the gravitational potential energy of the table increases by 1470 J. How high is the tab
    14·2 answers
  • (5, 3) and (7, 3) are two coordinate points for a single object on a position-versus-time graph. Assume time is measured in seco
    11·2 answers
  • I dont understand??????????????
    6·1 answer
  • What is the theory of plate tectonics? Question 15 options: A.the theory that earth's surface consists of separate plates that m
    10·2 answers
  • Which statement describes the relationship of voltage and current?
    7·2 answers
  • 50pts: Fill this out.
    8·2 answers
  • What did you learn about the vocal music of cordillera, mindoro, palawan and visayas
    6·1 answer
  • I have a voltage source of 12V but a light that only burns at 5V. The lamp works on 18 mA. Calculate the resistance that you EXT
    15·1 answer
  • Bobby and James were suffering from headaches. At seven o’clock, Bobby took the recommended two tablets of medicine for his head
    9·1 answer
  • In order to find the resultant of two vectors we must use the pythagoran therom, a +b2-2. Where the crepresents the resultant ve
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!