A radio station broadcast on a frequency of 3.7 mhz what is the energy of the radio wave A radio station broadcasts its programmes at a wavelength of 500 m. Find the frequency of the radiowaves transmitted by the radio station, if the speed of radiowaves in air is 3 x 108 m/s. Ans: 6 x 10 Hz
<h3>What is
radio station ?</h3>
Radio broadcasting is the act of sending audio (sound), occasionally together with accompanying metadata, across radio waves to radio receivers used by the general public. Unlike satellite radio, which uses a satellite in Earth's orbit, terrestrial radio broadcasting uses a land-based radio station to transmit radio waves. The listener needs a broadcast radio receiver to hear the material (radio). A radio network with which stations frequently have affiliations provide content in a standard radio format, whether through broadcast syndication, simulcasting, or both. Radio stations use a variety of modulations to transmit their signals, including FM (frequency modulation), which is an older analog audio standard, and AM (amplitude modulation).
To learn more about radio station from the given link:
brainly.com/question/26439029
#SPJ4
The moon's gravitational pull on Earth causes water to bulge on two sides of the Earth(#3)
https://scijinks.gov/tides/
Why is it always balloons?
anyways so the balloon volume goes somewhere else when it shrinks because the balloon is losing air i think
Answer:
time of fall and the final velocity
Explanation:
the mass of solid ball is more than the mass of hollow ball.
According to the third equation of motion
v² = u² + 2gh
As the final velocity v does not depend on the mass of the object, so the final velocity of both the ball is same.
According to the first equation of motion
v = u + gt
As v is same for both the balls, the time is also same for both the balls.
So, they both have same time of fall and final velocity.
Answer:
The tension in the string is 16.24 N
Explanation:
Given;
mass of the sphere, m = 1.55 kg
initial velocity of the sphere, u = 2.81 m/s
final velocity of the sphere, v = 4.60 m/s
duration of change in the velocity, Δt = 2.64 s
The tension of the string is calculated as follows;

T = 1.55(0.678 + 9.8)
T = 1.55(10.478)
T = 16.24 N
Therefore, the tension in the string is 16.24 N