Answer:
The value is 
Explanation:
From the question we are told that
The mass of the block is 
The force constant of the spring is 
The amplitude is 
The time consider is 
Generally the angular velocity of this block is mathematically represented as

=> 
=> 
Given that the block undergoes simple harmonic motion the velocity is mathematically represented as

=> 
=> 
Answer:
h = 3.10 m
Explanation:
As we know that after each bounce it will lose its 11% of energy
So remaining energy after each bounce is 89%
so let say its initial energy is E
so after first bounce the energy is

after 2nd bounce the energy is

After third bounce the energy is

here initial energy is given as

now let say final height is "h" so after third bounce the energy is given as

now from above equation we have




Answer:
all the heat energy goes into breaking the bonds of the ice's crystal lattice structure.
Explanation:
When you heat ice, its temperature rises, but as soon as the ice starts to melt, the temperature stays constant until all the ice has melted.
Answer:
In physics and chemistry, the law of conservation of energy states that the total energy of an isolated system remains constant; it is said to be conserved over time. ... For instance, chemical energy is converted to kinetic energy when a stick of dynamite explodes.
Answer:
Option c and d
Explanation:
The two mechanical devices which are used in laboratories for accurate measurement of small distances or small objects are calipers and micrometer.
Micrometer is a mechanical device used in laboratories like that of a screw gauge. It is used for the measurement of thickness of objects, length and the depth of the small objects which can be measured by holding the object in between the spindle and anvil of the micrometer.
Calipers is another mechanical device like that of vernier calipers used in laboratories for measurement of small distances, usually the distance between the opposing faces of the object. The measurement is usually taken on a digital display, a dial or a scale that is ruled.
The distance is measured by adjusting the tips of the caliper holding the object on a ruler.