Answer: 354311 N/C, 275095 N/C, 458528 N/C
Explanation:
E = kQ/[r * √(r² + L/2)²], where
L = 10 cm = 0.1 m
E = kQ/[r * √(r² + 0.05²)]
For the glass rod,
E at 1 cm =
E = k * 15*10^-9 / [0.01 * √(0.01² + 0.05²)]
E = k * 15*10^-9 / (0.01 * 0.051)
E = k * 15*10^-9 / 0.00051
E = (8.99*10^9 * 15*10^-9) / 0.00051
E = 264411 N/C
E at 2 cm
E = k * 15*10^-9 / [0.02 * √(0.02² + 0.05²)]
E = k * 15*10^-9 / (0.02 * 0.054)
E = k * 15*10^-9 / 0.00108
E = [8.99*10^8 * 15*10^-9] / 0.00108
E = 124861 N/C
E at 3 cm
E = k * 15*10^-9 / [0.03 * √(0.03² + 0.05²)]
E = k * 15*10^-9 / (0.03 * 0.0583)
E = k * 15*10^-9 / 0.00175
E = (8.99*10^9 * 15*10^-9) / 0.00175
E = 77057 N/C
For plastic rods
E at (3.7 - 1) cm
E = k * 15*10^-9 / [0.027 * √(0.027² + 0.05²)]
E = k * 15*10^-9 / (0.027 * 0.0568)
E = k * 15*10^-9 / 0.0015
E = (8.99*10^9 * 15*10^-9) / 0.0015
E = 89900 N/C
E at (3.7 - 2) cm
E = k * 15*10^-9 / [0.017 * √(0.017² + 0.05²)]
E = k * 15*10^-9 / (0.017 * 0.0528)
E = k * 15*10^-9 / 0.0008976
E = (8.99*10^9 * 15*10^-9) / 0.0008976
E = 150234 N/C
E at (3.7 - 3) cm
E = k * 15*10^-9 / [0.007 * √(0.007² + 0.05²)]
E = k * 15*10^-9 / (0.007 * 0.0505)
E = k * 15*10^-9 / 0.0003535
E = (8.99*10^9 * 15*10^-9) / 0.0003535
E = 381471 N/C
The net E are
E(net) at p1 = 264411 + 89900
E(net) at p1 = 354311 N/C
E(net) at p2 = 124861 + 150234
E(net) at p2 = 275095 N/C
E(net) at p3 = 77057 + 381471
E(net) at p3 = 458528 N/C