Answer:
Celsius is currently a derived unit for temperature in the SI system, kelvin being the base unit. ... The two main reference points of the Celsius scale were the freezing point of water (or melting point of ice) being defined as 0 °C and the boiling point of water being 100 °C.
Explanation:
Hope it helps
Answer: The answer is C. A mercury thermometer is better to measure very small changes in temperature.
Explanation:
i took this quiz and this is the answer .
A) A mercury thermometer can measure the freezing point of a liquid that freezes at −80 °C.
B) An alcohol thermometer can measure the boiling point of a liquid that boils at 80 °C.
C) A mercury thermometer is better to measure very small changes in temperature.
D) An alcohol thermometer is better to measure the boiling points of colorless liquids.
Answer:
arteries carry blood from the heart to the lungs and veins carry blood from the lungs to the heart
Explanation:
Arteries carry oxygenated blood from the heart, while veins carry oxygen-depleted blood back to the heart. ... The pulmonary veins transport oxygenated blood back to the heart from the lungs, while the pulmonary arteries move deoxygenated blood from the heart to the lungs.)
The largest in size usually attracks a population of what it is and whether the people think it is popular
Answer:
This question is incomplete, here's the complete question:
<em><u>"Suppose 0.0842g of potassium sulfate is dissolved in 50.mL of a 52.0mM aqueous solution of sodium chromate. Calculate the final molarity of potassium cation in the solution. You can assume the volume of the solution doesn't change when the potassium sulfate is dissolved in it. Round your answer to 2 significant digits."</u></em>
Explanation:
Reaction :-
K2SO4 + Na2CrO4 ------> K2CrO4 + Na2SO4
Mass of K2SO4 = 0.0842 g, Molar mass of K2SO4 = 174.26 g/mol
Number of moles of K2SO4 = 0.0842 g / 174.26 g/mol = 0.000483 mol
Concentration of Na2CrO4 = 52.0 mM = 52.0 * 10^-3 M = 0.052 mol/L
Volume of Na2CrO4 solution = 50.0 ml = 50 L / 1000 = 0.05 L
Number of moles of Na2CrO4 = 0.05 L * 0.052 mol/L = 0.0026 mol
Since number of moles of K2SO4 is smaller than number of moles Na2CrO4, so 0.000483 mol of K2SO4 will react with 0.000483 mol of Na2CrO4 will produce 0.000483 mol of K2CrO4.
0.000483 mol of K2CrO4 will dissociate into 2* 0.000483 mol of K^+
Final concentration of potassium cation
= (2*0.000483 mol) / 0.05 L = 0.02 mol/L = 0.02 M