Triangles: 2(1/2)*8*6=
Left side: 6*10 =
Right side: 8*10 =
Back side: 10*10 =
48 + 60 + 80 + 100 = 288cm^2
3/5 + 5/7 = 1 11/35 - 1/5 = 1 4/35 which is your final answer.
Answer:
a) 3x⁴-4x³-8x²-35x-10
Step-by-step explanation:
3x2(x²-3x-1)+5x(x²-3x-1)+10(x²-3x-1)
3x⁴-9x³-3x²+5x³-15x²-5x+10x²-30x-10
3x⁴-9x³+5x³-3x²-15x²+10x²-5x-30x-10
3x⁴-4x³-8x²-35x-10
See the attached figure to better understand the problem
let
L-----> length side of the cuboid
W----> width side of the cuboid
H----> height of the cuboid
we know that
One edge of the cuboid has length 2 cm-----> <span>I'll assume it's L
so
L=2 cm
[volume of a cuboid]=L*W*H-----> 2*W*H
40=2*W*H------> 20=W*H-------> H=20/W------> equation 1
[surface area of a cuboid]=2*[L*W+L*H+W*H]----->2*[2*W+2*H+W*H]
100=</span>2*[2*W+2*H+W*H]---> 50=2*W+2*H+W*H-----> equation 2
substitute 1 in 2
50=2*W+2*[20/W]+W*[20/W]----> 50=2w+(40/W)+20
multiply by W all expresion
50W=2W²+40+20W------> 2W²-30W+40=0
using a graph tool------> to resolve the second order equation
see the attached figure
the solutions are
13.52 cm x 1.48 cm
so the dimensions of the cuboid are
2 cm x 13.52 cm x 1.48 cm
or
2 cm x 1.48 cm x 13.52 cm
<span>Find the length of a diagonal of the cuboid
</span>diagonal=√[(W²+L²+H²)]------> √[(1.48²+2²+13.52²)]-----> 13.75 cm
the answer is the length of a diagonal of the cuboid is 13.75 cm
So a triangular prisim is like a triangle stacked on top of x number of identical triangles making a height, like a piece of paper made into a stack
so
basically find the area of each side and add
look at diagram/attachment
find area of triangle
1/2 b times h= area of 1 triangular face
multiply by 2 because 2 sides so 1/2 times 2 b times h=b times h
then 3 other sides
find area of each side and add
areas=(H times B)+(H times c)+(H times a)
so SA=(b times H)+(H times B)+(H times c)+(H times a)