Answer:
<u>Answer</u><u> </u><u>→</u><u> </u><u>Student</u><u> </u><u>A</u><u> </u><u>was</u><u> </u><u>right</u><u>.</u>
![{ \tt{ \sqrt[3]{1944} = \sqrt[3]{(72 \times 27)} }} \\ \\ = { \tt{ \sqrt[3]{72} \times \sqrt[3]{27} }} \\ \\ = { \tt{ \sqrt[3]{72} \times 3}} \\ \\ = { \underline{ \tt{ \: 3 \sqrt[3]{72} } \: }}](https://tex.z-dn.net/?f=%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B1944%7D%20%20%3D%20%20%5Csqrt%5B3%5D%7B%2872%20%5Ctimes%2027%29%7D%20%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B72%7D%20%5Ctimes%20%20%5Csqrt%5B3%5D%7B27%7D%20%20%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Ctt%7B%20%5Csqrt%5B3%5D%7B72%7D%20%20%5Ctimes%203%7D%7D%20%5C%5C%20%20%5C%5C%20%20%3D%20%7B%20%5Cunderline%7B%20%5Ctt%7B%20%5C%3A%203%20%5Csqrt%5B3%5D%7B72%7D%20%7D%20%5C%3A%20%7D%7D)
Given that
log (x+y)/5 =( 1/2) {log x+logy}
We know that
log a+ log b = log ab
⇛log (x+y)/5 =( 1/2) log(xy)
We know that log a^m = m log a
⇛log (x+y)/5 = log (xy)^1/2
⇛log (x+y)/5 = log√(xy)
⇛(x+y)/5 = √(xy)
On squaring both sides then
⇛{ (x+y)/5}^2 = {√(xy)}^2
⇛(x+y)^2/5^2 = xy
⇛(x^2+y^2+2xy)/25 = xy
⇛x^2+y^2+2xy = 25xy
⇛x^2+y^2 = 25xy-2xy
⇛x^2+y^2 = 23xy
⇛( x^2+y^2)/xy = 23
⇛(x^2/xy) +(y^2/xy) = 23
⇛{(x×x)/xy} +{(y×y)/xy} = 23
⇛(x/y)+(y/x) = 23
Therefore, (x/y)+(y/x) = 23
Hence, the value of (x/y)+(y/x) is 23.
If you're using the app, try seeing this answer through your browser: brainly.com/question/3000160————————
Find the derivative of

You can treat
y as a composite function of
x:

so use the chain rule to differentiate
y:

The first derivative is
1/u, and the second one can be evaluated by applying the quotient rule:

Multiply out those terms in parentheses:

Substitute back for


Simplifying that product, you get

∴

I hope this helps. =)
Tags: <em>derivative composite function logarithmic logarithm log trigonometric trig secant tangent sec tan chain rule quotient rule differential integral calculus</em>
Answer:
x=5 1/4
Step-by-step explanation:
2 1/4=
--->
divided by 3 to find 1/7x---->
=1/7x---> x=21/4---> x=5 1/4