Complete Question:
Football player A has a mass of 110 kg, and he is running down the field with a velocity of 2 m/s. Football player B has a mass of 120 kg and is stationary. What is the total momentum after the collision?
Answer:
Total momentum = 220 Kgm/s.
Explanation:
<u>Given the following data;</u>
For footballer A
Mass, M1 = 110kg
Velocity, V1 = 2m/s
For footballer B
Mass, M1 = 120kg
Velocity, V1 = 0m/s since he's stationary.
To find the total momentum;
Momentum can be defined as the multiplication (product) of the mass possessed by an object and its velocity. Momentum is considered to be a vector quantity because it has both magnitude and direction.
Mathematically, momentum is given by the formula;
a. To find the momentum of A;
Momentum A = 220 Kgm/s.
b. To find the momentum of B;
Momentum B = 0 Kgm/s.
c. To find the total momentum of the two persons;
Substituting into the equation, we have;
<em>Total momentum = 220 Kgm/s. </em>
Answer:Chemical
Explanation:Photosynthesis is the biochemical reaction through which all green plants, including trees, make their food to live and grow.
Electromagnetic radiation is an energy that is known as light. so electromagnetic radiation will have the same speed as the speed of light which is 3 x 10^8 m/s. so the distance it travel at 55 x 10^-6 s is:
D = ( 3 x 10^8 m/s ) ( 55 x 10^-6 s )
D = 16500 m
Answer:
α = 3×10^-5 K^-1
Explanation:
let ΔL be the change in length of the bar of metal, ΔT be the change in temperature, L be the original length of the metal bar and let α be the coefficient of linear expansion.
then, the coefficient of linear expansion is given by:
α = ΔL/(ΔT×L)
= (0.3×10^-3)/(100)(100×10^-3)
= 3×10^-5 K^-1
Therefore, the coefficient of linear expansion is 3×10^-5 K^-1
The Atmosphere in Jupiter is full of gases that move at high speeds in giant eddies. Its atmosphere consists mostly of gases such as hydrogen that generate a temperature fluctuation of around 128K.
On Earth, due to the protection of the Ozone Layer and the presence of Nitrogen and Oxygen, the temperature fluctuates by an average of 300K.
In the case of Mars, its atmosphere is thin, mostly composed of Carbon Dioxide and Diatomic Nitrogen, which allow a temperature oscillation of 210K.
In contrast, the atmosphere of Venus is thick and is composed of carbon dioxide that does not allow the sun's rays to escape, generating an extreme 'greenhouse effect' with temperatures ranging from 737K,
Correct Answer is A.