Answer:
Option C
Sound quality
Explanation:
Sounds with the same pitch and loudness means they share natural frequency where frequency here implies the the number of vibrations that an individual particle makes per unit time (seconds). Additionally, when the pitch and loudness are the sane, the resonance and standing waves of these sounds will be similar. However, the quality of the sounds will vary. Therefore, option C is the correct one.
Answer:
a = 9.94 m/s²
Explanation:
given,
density at center= 1.6 x 10⁴ kg/m³
density at the surface = 2100 Kg/m³
volume mass density as function of distance

r is the radius of the spherical shell
dr is the thickness
volume of shell

mass of shell


now,

integrating both side



we know,




a = 9.94 m/s²
The answer is, "the speed of the current is 5 miles per hour."
To calculate the speed of the current,
let's assume speed of current = xmph. Time taken to travel from one pier to another with the current = 100/(20+x)h
But the time taken to travel from one pier to another with the current, which is given is = 4 hours. So, 4=100/(20+x) 80+4x = 100
4x = 20
x = 5 Thus, the speed of the current is 5 miles per hour.
We will use the formula / equation to determined the time.
Distance = ½ * (vi + vf) * t
48100 = ½ * (26.3 + 41.9) * t
t = 48100 ÷ 34.1 = 1410.557185 seconds
We will use the formula / equation to determined the acceleration.
vf = vi + a * t
41.9 = 26.3 + a * 1410.557185
a = (41.9 – 26.3) ÷ 1410.557185 = 0.011059459 m/s^2
We will use the formula / equation to determined the acceleration.
vf^2 = vi^2 + 2 * a * d
41.9^1 = 26.3^2 + 2 * a * 48100
a = (41.9^2 – 26.3^2) ÷ 96200 = 0. 011059459 m/s^2
Since both answers are the same, I believe the acceleration is correct.