Answer:
2.6×10⁻³ N
Explanation:
From coulomb's law,
F = kq'q/r²................ Equation 1
Where F = Repulsive force, q' = charge on the first sugar grain, q = charge on the second sugar grain, r = distance of separation between the sugar grain, k = proportionality constant.
From the question,
since q' = q
Then,
F = kq²/r²..................... Equation 2
Given: q = 1.79×10⁻¹¹ C, r = 3.45×10⁻⁵ m,
Constant: k = 9×10⁹ Nm²/kg².
Substitute into equation 2
F = 9×10⁹(1.79×10⁻¹¹)²/(3.45×10⁻⁵ )²
F = 9×10⁹(3.2041×10⁻²²)/(11.9025×10⁻¹⁰)
F = (28.8369×10⁻¹³)/(11.9025×10⁻¹⁰)
F = 2.6×10⁻³ N.
Answer:
<h2>The answer is 5 s</h2>
Explanation:
The time taken can be found by using the formula

d is the distance
v is the velocity
From the question we have

We have the final answer as
<h3>5 s</h3>
Hope this helps you
Answer:
Because there is nothing out in space , the sound waves from one astronaut's whistling can't travel over to the other astronaut's ears.
Answer:Probably water ballons,Paint,Etc
Explanation:
Answer:
"It will be more than the speed of sound waves in air at 20*C and water at 20*C."
Explanation:
Speed of sound in a medium depends upon the density and elasticity of the medium.
If the elasticity of a medium is greater and the density of that medium is lower, sound will travel faster. Although density is also a factor but the major factor is Elasticity.
Hence, sound travel faster in solids than in liquids and even slower in gases due to elasticity difference.

That is why the speed of sound in glass will be more than the speed of sound waves in air at 20*C and water at 20*C.