Answer:
The leverage or mechanical advantage of pulleys is less obvious, but you can "gang" multiple pulleys together into two sets (blocks) and run the ropes back and forth between the two sets to increase the number of lengths of rope running between them. One end of the rope is connected (fixed) to one of the blocks, and you get to pull on the other end after it is passed back and forth between the blocks of pulleys. This is sometimes called a block and tackle arrangement. With a hook on each side of the block set, you can move a heavy load much like levers do, by multiplying the force. You have to pull more rope just like you have to move a lever more on one side of the fulcrum as compared to the other. When you get all the rope pulled out that you can, you can not move the load anymore because you have become "two-blocked" which means the two blocks are together. Credits to: Moin Khan
Calculate the pressure due to sea water as density*depth.
That is,
pressure = (1025 kg/m^3)*((9400 m)*(9.8 m/s^2) = 94423000 Pa = 94423 kPa
Atmospheric pressure is 101.3 kPa
Total pressure is 94423 + 101.3 = 94524 kPa (approx)
The area of the window is π(0.44 m)^2 = 0.6082 m^2
The force on the window is
(94524 kPa)*(0.6082 m^2) = 57489.7 kN = 57.5 MN approx
Answer:Force is to the right
Explanation: because the right side has 75N compared to the 25N on the left.
P = m*v
7.5 = m*15
m = 7.5/15 = 0.5 kg
Answer:
The electron’s velocity is 0.9999 c m/s.
Explanation:
Given that,
Rest mass energy of muon = 105.7 MeV
We know the rest mass of electron = 0.511 Mev
We need to calculate the value of γ
Using formula of energy


Put the value into the formula


We need to calculate the electron’s velocity
Using formula of velocity




Put the value into the formula



Hence, The electron’s velocity is 0.9999 c m/s.