1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
joja [24]
3 years ago
15

A box with mass (m) it's sliding along on a friction-free surface at 9.87 m/s at a height of 1.81 meters. It travels down the hi

ll and then up another hill.
a. Find the speed at the bottom of the hill
b. Find the maximum vertical history which the box will rose on the opposite hill.
Physics
1 answer:
Rus_ich [418]3 years ago
3 0
A) The answer is 11.53 m/s

The final kinetic energy (KEf) is the sum of initial kinetic energy (KEi) and initial potential energy (PEi).
KEf = KEi + PEi

Kinetic energy depends on mass (m) and velocity (v)
KEf = 1/2 m * vf²
KEi = 1/2 m * vi²

Potential energy depends on mass (m), acceleration (a), and height (h):
PEi = m * a * h

So:
KEf = KEi + <span>PEi
</span>1/2 m * vf² =  1/2 m * vi² + m * a * h
..
Divide all sides by m:
1/2 vf² =  1/2 vi² + a * h

We know:
vi = 9.87 m/s
a = 9.8 m/s²
h = 1.81 m

1/2 vf² =  1/2 * 9.87² + 9.8 * 1.81
1/2 vf² = 48.71 + 17.74
1/2 vf² = 66.45
vf² = 66.45 * 2
vf² = 132.9
vf = √132.9
vf = 11.53 m/s


b) The answer is 6.78 m

The kinetic energy at the bottom (KE) is equal to the potential energy at the highest point (PE)
KE = PE

Kinetic energy depends on mass (m) and velocity (v)
KE = 1/2 m * v²

Potential energy depends on mass (m), acceleration (a), and height (h):
PE = m * a * h

KE = PE
1/2 m * v² = m * a * h

Divide both sides by m:
1/2 * v² = a * h
v = 11.53 m/s
a = 9.8 m/s² 
h = ?

1/2 * 11.53² = 9.8 * h
1/2 * 132.94 = 9.8 * h
66.47 = 9.8 * h
h = 66.47 / 9.8
h = 6.78 m
You might be interested in
What’s the answer ?????
Mice21 [21]

Answer:

<h2>Refer the attachment for answer and explanation please</h2>

Explanation:

This might surely help you ☺️❤️

7 0
3 years ago
Two 110 kg bumper cars are moving toward each other in opposite directions. Car A is moving at 8 m/s and Car Z at –10 m/s when t
salantis [7]

Explanation:

Mass of bumper cars, m_1=m_2=110\ kg

Initial speed of car A, u_1=8\ m/s

Initial speed of car Z, u_2=-10\ m/s

Final speed of car A after the collision, v_1=-10\ m/s

We need to find the velocity of car Z after the collision. Let it is equal to v_2. Using the conservation of momentum as :

m_1u_1+m_2u_2=m_1v_1+m_2v_2

110\times 8+110\times (-10)=110\times (-10)+110v_2

v_2=\dfrac{-1320}{110}\ m/s

v_2=-12\ m/s

So, the velocity of car Z after the collision is (-12 m/s). Hence, this is the required solution.

5 0
3 years ago
Help on finding kinetic energy??
Jobisdone [24]
Trick question? In order to have kinetic energy, an object must be moving. Therefore, in this case, kinetic energy would be 0. If it were asking about potential energy, it would be a different story. 
8 0
3 years ago
Read 2 more answers
A rectangular gasoline tank can hold 50.0 kg of gasoline when full. What is the depth of the tank if it is 0.500-m wide by 0.900
sweet-ann [11.9K]

Answer:

0.16 m

Explanation:

A rectangular gasoline tank can hold 50.0 kg of gasoline when full, and the density of gasoline is 6.8 × 10² kg/m³. We can find the volume occupied by the gasoline (volume of the tank).

50.0 kg × (1 m³/6.8 × 10² kg) = 0.074 m³

The volume of the rectangular tank is:

volume = width × length × depth

depth = volume / width × length

depth = 0.074 m³ / 0.500 m × 0.900 m

depth = 0.16 m

3 0
3 years ago
You have two square metal plates with side lengths of (6.50 C) cm. You want to make a parallel-plate capacitor that will hold a
gtnhenbr [62]

Answer:

The necessary separation between  the two parallel plates is 0.104 mm

Explanation:

Given;

length of each side of the square plate, L = 6.5 cm = 0.065 m

charge on each plate, Q = 12.5 nC

potential difference across the plates, V = 34.8 V

Potential difference across parallel plates is given as;

V = \frac{Qd}{L^2 \epsilon_o} \\\\d = \frac{V L^2 \epsilon_o}{Q}

Where;

d is the separation or distance between the two parallel plates;

d = \frac{VL^2 \epsilon_o}{Q} \\\\d =  \frac{34.8*(0.065)^2 *8.854*10^{-12}}{12.5*10^{-9}} \\\\d = 0.000104 \ m\\\\d = 0.104 \ mm

Therefore, the necessary separation between  the two parallel plates is 0.104 mm

6 0
3 years ago
Other questions:
  • He is the chemical symbol for which element? Select one: a. hydrogen b. hassium c. helium d. hafnium
    7·1 answer
  • A graph of Boyle’s law shows the relationship between
    11·1 answer
  • (x) A change in position is called:
    13·1 answer
  • The full range of frequencies of electromagnetic radiation is called
    12·1 answer
  • The Balmer series is formed by electron transitions in hydrogen that
    13·1 answer
  • Which theory of light is the photon more consistent with
    6·1 answer
  • A student in gym class swings from a rope and they are moving 5 m/s at the bottom of their swing. What is the height they reach
    11·1 answer
  • Is calculating the change of velocity the same as calculating acceleration? ​
    13·1 answer
  • Help asap I will give brainleast
    15·1 answer
  • PLEASE HELP a current of 0.5 A flows with a resistance of 50 ohms what is the e.m.f applied NEED HELP ASAP AND BRAINLIEST​
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!