Answer:
32 cm
Explanation:
f = focal length of the converging lens = 16 cm
Since the lens produce the image with same size as object, magnification is given as
m = magnification = - 1
p = distance of the object from the lens
q = distance of the image from the lens
magnification is given as
m = - q/p
- 1 = - q/p
q = p eq-1
Using the lens equation, we get
1/p + 1/q = 1/f
using eq-1
1/p + 1/p = 1/16
p = 32 cm
Explanation:
(b) We know that,
1 day = 24 hours
1 hour = 3600 s
So, we found that, 1 day = 86400 s
We need to find the 360 days into seconds. So,
1 day = 86400 s
360 days = 86400×360
360 days = 31104000 seconds
(d) Weight of a body, W = 600 N
Acceleration due to gravity on mars is 3.7 m/s²
Weight, W = mg
m is mass of body

(e) Mass of body, m = 100 kg
Acceleration due to gravity on the moon, 1.6 m/s²
Weight, W = 100 × 1.6
W = 160 N
Kirchhoff's circuit laws are two equalities that deal with the current and potential difference (commonly known as voltage) in the lumped element model of electrical circuits. They were first described in 1845 by German physicist Gustav Kirchhoff. This generalized the work of Georg Ohm and preceded the work of Maxwell.
As the box is moving with a constant velocity, the two forces acting on the box are canceling each other.
Then friction force = 80 Newtons but in the opposite direction.
Friction force = Mu * Normal force exerted by ground = Mu * weight of box
So we find Mu.
Mu = coefficient of friction between box and horizontal surface
= Force of friction / weight = 80 / 50 * 9.81 = 0.163
When an identical box is placed on top, the force of friction is
= Mu * total weight = 0.163 * (50+50) * 9.81 = 159.9 Newtons
That is 164.592cm = 5.4 feet