Nickel has a happy amount of 28 electrons.
The temperature of the lithosphere is around 300<span>°C</span> - 500<span>°<span>C</span></span>
Answer:
a) -2.516 × 10⁻⁴ V
b) -1.33 × 10⁻³ V
Explanation:
The electric field inside the sphere can be expressed as:

The potential at a distance can be represented as:
V(r) - V(0) = 
V(r) - V(0) =
₀
V(r) =
₀
Given that:
q = +3.83 fc = 3.83 × 10⁻¹⁵ C
r = 0.56 cm
= 0.56 × 10⁻² m
R = 1.29 cm
= 1.29 × 10⁻² m
E₀ = 8.85 × 10⁻¹² F/m
Substituting our values; we have:

= -2.15 × 10⁻⁴ V
The difference between the radial distance and center can be expressed as:
V(r) - V(0) = 
V(r) - V(0) = ![[\frac{qr^2}{8 \pi E_0R^3 }]^R](https://tex.z-dn.net/?f=%5B%5Cfrac%7Bqr%5E2%7D%7B8%20%5Cpi%20E_0R%5E3%20%7D%5D%5ER)
V(r) = 
V(r) = 
V(r) 
V(r) = -0.00133
V(r) = - 1.33 × 10⁻³ V
Answer:
There are four primary impact points when it comes to industrialization — air, water, soil and habitat. The biggest problem is air pollution, caused by the smoke and emissions generated by burning fossil fuels. ... Finally, industrialization has led to dramatic habitat destructionExplanation: hope it helps
Strength of the magnetic field: 20 T
Explanation:
For a conductive wire moving perpendicular to a magnetic field, the electromotive force (voltage) induced in the wire due to electromagnetic induction is given by

where
B is the strength of the magnetic field
v is the speed of the wire
L is the length of the wire
For the wire in this problem, we have:
(induced emf)
L = 0.20 m (length of the wire)
v = 3.0 m/s (speed)
Solving for B, we find the strength of the magnetic field:

Learn more about magnetic fields:
brainly.com/question/3874443
brainly.com/question/4240735
#LearnwithBrainly