a. I've attached a plot of the surface. Each face is parameterized by
•
with
and
;
•
with
and
;
•
with
and
;
•
with
and
; and
•
with
and
.
b. Assuming you want outward flux, first compute the outward-facing normal vectors for each face.





Then integrate the dot product of <em>f</em> with each normal vector over the corresponding face.










c. You can get the total flux by summing all the fluxes found in part b; you end up with 42π - 56/3.
Alternatively, since <em>S</em> is closed, we can find the total flux by applying the divergence theorem.

where <em>R</em> is the interior of <em>S</em>. We have

The integral is easily computed in cylindrical coordinates:


as expected.
Answer:mile
Explanation: heres a hint think aboyt the distance between your house to school
I think the correct answer from the choices listed above is the second option. The relationship between the direction of energy and wave motion in a transverse wave would be the <span>energy direction is perpendicular to the motion of the wave. Hope this answers the question. Have a nice day.</span>
Answer:
D. Asthenosphere
Explanation:
The asthenosphere is relatively plastic part of the mantle which underlies the brittle lithosphere. In the asthenosphere, it is generally believed that the rocks are in ductile state and easily moves. It is the site of convection within the earth. In mantle convection, hot and light materials rises and keeps moving into upper crustal levels till they solidify. Here also, cold and denser materials sinks deeper till they turn to melt. This differences in temperature and density sets up a convective cell within the mantle. Several convective cells are in the mantle.