Answer:
Explanation:
Initial kinetic energy of M = 1/2 M vi²
let final velocity be vf
v² = u² + 2a s
vf² = vi² + 2 (F / M) x D
Kinetic energy
= 1/2 Mvf²
= 1/2 M ( vi² + 2 (F / M) x D
1/2 M vi² + FD
Ratio with initial value
1/2 M vi² + FD) / 1/2 M vi²
RK = 1 + FD / 2 M vi²
500 ml = 0.5 liters. that's what i'm getting
hope it helps
-1- was created in the 1600 by william gilbert
-2-When the charge is positive, electrons in the metal of the electroscope are attracted to the charge and move upward out of the leaves. This results in the leaves to have a temporary positive charge and because like charges repel, the leaves separate. When the charge is removed, the electrons return to their original positions and the leaves relax
3-
An electroscope is made up of a metal detector knob on top which is connected to a pair of metal leaves hanging from the bottom of the connecting rod. When no charge is present the metals leaves hang loosely downward. But, when an object with a charge is brought near an electroscope, one of the two things can happen.
I think that numbers one, three, and four are true
We use a fundamental kinematic equation as follows:
V = Vo + g*t.
<span>Tr = (V-Vo)/g = (0-10)/-10 = 1 s. = </span><span>time to reach max. height </span>
<span>Tf = Tr = 1 s. = Fall time or time to fall back to edge of bldg. </span>
<span>3-Tr-Tf = 3-1-1 = 1 s. Below edge of bldg. </span>
<span>d = Vo*t + 0.5g*t^2. </span>
<span>d = 10*1 + 5*1^2 = 15 m. <---- OPTION C</span>